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Summary 

Accurate depth estimation of magnetic sources plays a crucial role in various geophysical applications, 

including mineral exploration, resource assessments, and geological mapping. Thus, this paper presents 

a fast and simple method of estimating the depth of a magnetic body using the TDX derivative of the 

total magnetic field. TDX is a first-order derivative of the magnetic field that, in addition to edge 

detection, is less affected by noise, allowing for better depth resolution. The reduced sensitivity to noise 

enables a clearer estimation of depth and enhances the accuracy of the depth determination process. The 

TDX, as a variant of the phase derivative, is independent of magnetization and can be used to identify 

the edge of a magnetic body. In this study, we explore the utilization of contour of the TDX derivative 

for estimating depth, assuming a vertical contact source. We demonstrate the effectiveness of the 

method using a two-prism block model and a simple bishop model with a uniform susceptibility of 

0.001 cgs. The results agree with the known depth, providing evidence of the reliability of the method 

despite the restrictive nature of the assumption, especially for the Bishop model, where there are 

numerous fault structures. 
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Introduction 

Recently, it has become increasingly important to develop fast and reliable techniques for estimating 

the subsurface position of the magnetic source causing magnetic anomalies. The need for an automated 

method arises from the need to qualitatively and quantitatively interpret the large volume of magnetic 

data being collected nowadays for both exploration and environmental purposes (Ahmed Salem et al., 

2008). Researchers have developed various techniques to achieve these objectives for both profile and 

grid depth estimation. Before the introduction of Euler deconvolution in magnetic interpretation, the 

"pre-Euler era" of interpretation witnessed the development of various techniques including graphical 

methods and curve matching techniques such as Peters method, horizontal slope distance (HSD), half-

width method, and several semi-automatic profile-based methods like Naudy and Wenner method. 

Subsequently, the "Euler era" ensued, which ushered in more advanced methods of depth interpretation 

techniques, started with the introduction of conventional 2D and 3D Euler deconvolution techniques. 

Faced with many limitations, especially being computationally intensive with too many depth solutions 

to contend with, the Euler techniques metamorphose as a result of a multitude of subsequent 

developments and enhancements to the approach. This era had a significant impact on the interpretation 

of magnetic data, facilitating the rapid calculation of the depth of magnetic body. In the current period, 

the post-Euler era, researchers have developed more sophisticated and reliable techniques for analysing 

the spectral characteristics of individual anomalies. These methods include the utilization of analytical 

signal, local wavenumber, tilt, and the power spectrum method. These advancements have facilitated a 

systematic examination of the spectral content associated with anomalies. 

Even with the advancement in techniques, interpretation difficulties still exist with magnetic anomalies, 

as they are characterized by both positive and negative components. Mathematical derivatives have 

been used to resolve the ambiguities in interpreting the anomalies after the necessary mathematical 

transformation, which assumes vertical magnetization, has been applied. Amplitude derivatives have 

been used to locate the edges of magnetic bodies. However, they are sensitive to the magnitude of 

magnetization, making it difficult to identify smaller anomalies of interest and confidently estimate 

their depth in the presence of larger magnetic anomalies. Phase derivatives and their variants, on the 

other hand, are independent of magnetization and can also identify the edge of magnetic body. They 

not only excel at edge detection but can also be used to estimate the depth of the magnetic source 

producing the anomalies. In this study, we explore the utilization of the TDX derivative contour for 

estimating depth, assuming a vertical contact source. 

Theory 

TDX derivatives (Cooper & Cowan, 2006) is basically a modified form of the tilt derivative (TDR), in 

which the total horizontal derivative (THDR) is normalized by the absolute value of the vertical 

derivative (VDR). This derivative, like other phase derivatives, has many interesting properties. The 

normalization makes this derivative unique, while the arctangent function restricts the output to between 

0 and π/2. Apart from the angular restriction and its independence from changes in magnetization, the 

derivative over the contact is much sharper with TDX than TDR (J. Derek Fairhead, 2015) as shown in 

figure 2 over a two prism blocks model. Cooper & Cowan, 2006 described the TDX filter in the form 

of: 
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TDR and TDX derivatives share some interesting characteristics and can be related together. 
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Over contact or edge boundary, vertical derivative is approximately zero. So, |TDR| = 0 and TDX = 

π/2. This expression shows that the angle defined by TDX can only be positive since the absolute value 

of the vertical derivative is used to normalize the horizontal derivative. Thus, TDX is effectively π/2 - 

|TDR| which has value between 0° and 90° (Fairhead, 2015). This further shows that at the edge 

location, TDX has a maximum value since TDR (tilt) is zero at the same point. Nabighian (1972) gives 

an expression for a vertical and horizontal derivative over a sloping contact model with horizontal 

location, h, and depth, Z, to the contact as: 

𝑑𝑇
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=  2𝑘𝑇𝑐 sin 𝑑
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Where k is the magnetic susceptibility contrast, T as the magnitude of the magnetic field, c = 1 – cos2i 

sin2A, A is the angle between the magnetic north and the horizontal h-axis, i is the ambient field 

inclination, tan I = tan i /cos A, and d is the dip.  All trigonometric identities are in degrees. Assuming 

vertical contact and vertical magnetization (RTP). Substituting d as 90° and A as zero into the Nabighian 

expressions and TDX derivative above, TDX can be reduced to 

𝑇𝐷𝑋 =  tan−1 (
𝑧

ℎ
) … … … … … … … … . (1) 

Equation 1 illustrates the correlation between the TDX amplitude and the depth of the magnetic contact. 

The maximum TDX amplitude is observed at h = 0. Additionally, when TDX is 45°, the depth is 

equivalent to the horizontal distance. This demonstrates that TDX contours can be utilized to identify 

both the edge of the magnetic source (h = 0) at the 90° contour and the depth of contact-like structures 

(distance between 45° and 90° contours). Due to the inherent ambiguity of the 90° contour, depth 

estimation using the TDX map can be estimated by half the distance between the 45° contours on both 

sides of the 90° contour. 

Synthetic Example: Two Prism Blocks Model 

The methodology is applied to a synthetic model containing two vertical-sided prism blocks (Figure 

1a). The depth to the top of the two prisms is known; 4km for the first prism, and 8km for the second 

prism. Both prisms have an unlimited depth extension and a magnetization contrast of 0.0001 A/m. The 

ambient magnetic field assumes vertical magnetization and has a declination of 0°. Figures 1b, and c 

show the THDR, and the absolute value of the VDR used to produce the TDX map (Figure 1d). Figure 

1e only shows the TDX contour of interest. Observation of the 45° – 90° contours shows the depth to 

the top of the magnetic body can be approximated from the distance between two contours. While the 

distance between the two contours around the perimeter of the prism blocks is not uniform due to 

anomaly interference, the average distance between the contours for the first block is about 8km and 

16km for the second prism block. The depth can be estimated by half the distance between the two 

contours. Figure 1f shows the estimated depth along the edge of the blocks. 

The Bishop Model: 

Ever since the use of the 3D basement model was proposed by Williams et al., 2002 to evaluate the 

effectiveness of depth to basement techniques, It has been used by researchers to accurately test 

techniques for estimating depth to magnetic source (For example: Fairhead et al., 2004; A. Reid et al., 

2005; Salem et al., 2007, 2012; S. E. Williams et al., 2005). This is because the model provides a 

realistic 3D test of the subsurface with a reasonable level of complexity. The model was created from a 

real topographic dataset from a part, 10.5km by 10.5km, of the volcanic tablelands area north of Bishop 

in California with the original elevation model scaled by a factor of 30 in all direction to create a basin-

sized setting.  



85th EAGE Annual Conference & Exhibition 

 (A) Total magnetic intensity (nT)  (B) Total Horizontal Derivatives             (C) |VDR|

(D) TDX map           (E)  45° ≤ TDX ≤ 90°  (F) Estimated depth 

Figure 1 Two prism Model (A) TMI (B) Total Horizontal Derivative (C) Absolute value of Vertical 

Derivative (D) TDX map and (E) contour of interest, 45° ≤ TDX ≤ 90° (F) Estimated depth along the 

depth of the block. 

Figure 2 Comparison of TDX and TDR profile response over the two magnetic prim blocks in Figure 

1. The vertical lines represent the contact or edge boundary. Maxima from the TDX and zero crossing 

from the TDR. 

The topography surface datum was adjusted in the depth direction, resulting in the structure being 

positioned below the subsurface, with the shallowest point having a depth of a few hundred metres in 

the NW and the deepest point having a depth of around 10 kilometres in the SE (Figure 3a). Geologically 

speaking, numerous exposed fault scraps of varying sizes, shapes, and orientations are visible in the 

area, as well as the existence of two major fault structures (Fairhead et al., 2004). This model thus 

provides the uniqueness and complexities needed to test and validate any interpretation or automated 

depth determination technique. Using the simple 3D bishop model with a constant susceptibility of 

0.001, we applied the methodology to estimate the depth of the basement using contours of the TDX as 

explained above. By differentiating equation 1 above with respect to h, we can relate the total horizontal 

derivative of the TDX to the horizontal derivative of the tilt. As such, the depth along the edge of the 

body can be estimated. Figure 3c shows the estimated depth along the edge of the structure. 
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  (A) TMI (nT)         (B) 45° ≤ TDX ≤ 90°                (C) Estimated depth   

Figure 3 Bishop Models. (A) TMI response generated from a basement model, with uniform magnetic 

basement susceptibility, RTP’ed, and field strength of 50,000nT (B) TDX map showing contour of 

interest (45° ≤ TDX ≤ 90°) (C) Estimated depth along the edge. 

Conclusions 

This study presents the use of the contour of the TDX derivative as a depth estimation technique, 

assuming vertical contact. The method is tested on a two-prism theoretical model and the well-known 

3D bishop model with a single basement susceptibility. The results agree with the known depth, 

providing evidence of the reliability of the method despite the restrictive nature of the assumption, 

especially for the Bishop model, where there are numerous fault structures. 
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