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Geophysical DC resistivity imaging is crucial in subsurface exploration, environmental studies, 
and resource assessment. However, traditional inversion techniques face challenges in accurately 
resolving complex subsurface features because of the inherent nonlinearities in geophysical 
data. To overcome these challenges, we propose a hybrid optimization approach that combines 
incomprehensible but intelligible-in-time (IbI) logic with the interior point method (IPM). The IbI logic 
framework leverages complexity and temporal intelligibility, allowing for a dynamic interpretation of 
subsurface phenomena. By integrating IbI with IPM, our approach benefits from global exploration 
and local refinement, leading to improved convergence speed and solution quality. The objective 
function formulated for the inversion process includes data misfit and model regularization terms, 
which promote accurate and smooth solutions. Our methodology involves the use of the IbI logic 
algorithm (ILA) for initial global search, which identifies promising regions in the search space. This is 
followed by the application of IPM for local optimization. This synergy between the two algorithms 
ensures robustness and efficiency in handling large datasets and complex geological models. We 
conducted tests using synthetic and real DC resistivity data to validate our approach. The synthetic 
test demonstrated the accurate reconstruction of subsurface anomalies, whereas the real data test 
successfully identified fault zones, which is consistent with previous studies. The hybrid optimization 
algorithm significantly improves the resolution of subsurface structures and enhances geophysical 
data inversion practices. It balances the exploration and refinement phases effectively, optimizing the 
computation time and ensuring precise model delineation.

Keywords  Geophysical inversion, DC resistivity imaging, Hybrid optimization, IbI logic algorithm, Interior 
point method

Geophysical methods, especially DC resistivity imaging, are crucial in subsurface exploration, environmental 
studies, and resource assessment. The inversion of DC resistivity data is a fundamental process that aims to 
reconstruct the subsurface resistivity distribution from measured data, providing valuable insights into geological 
structures and hydrogeological properties1,2. Traditional inversion techniques, such as least-squares methods 
and linearized inversion algorithms, have been widely used to address these problems. These methods often 
face challenges in accurately resolving complex subsurface features and handling the nonlinearities inherent in 
geophysical data3,4.

To address these challenges, various advanced optimization algorithms have been developed. For example, 
evolutionary algorithms such as genetic algorithms and particle swarm optimization have been employed 
to improve inversion resolution by effectively exploring the global search space. These algorithms have 
demonstrated significant improvements in overcoming local minima and enhancing convergence speed5,6. 
However, these methods still have limitations, such as insufficient adaptability to complex geological structures 
and computational inefficiency when handling large datasets. The need for more robust and efficient inversion 
methods has led to the exploration of hybrid optimization approaches, which combine the strengths of multiple 
algorithms to increase performance6,7. In this context, we propose a novel hybrid optimization algorithm that 
integrates Intelligible-in-time (IbI) logic with the interior point method (IPM).

The IbI logic framework leverages complexity and temporal intelligibility, allowing for a dynamic 
interpretation of subsurface phenomena8. This technique offers a novel approach for interpreting DC resistivity 
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data, particularly in areas with diverse subsurface characteristics. By acknowledging the incomprehensible 
aspects of specific geological processes and the constraints of conventional linear models, IbI establishes a 
structure for capturing the dynamic and evolving nature of subsurface formations9. The fundamental concept of 
applying IbI in geophysics involves embracing uncertainty and nondeterminism as inherent traits of the Earth’s 
subsurface. Instead of pursuing definitive solutions or exact forecasts, IbI encourages the investigation of the 
developing patterns and trends in geophysical data, facilitating a better understanding of intricate geological 
systems10. Implementing IbI leads to the adoption of adaptive approaches that evolve over time, responding 
to new data insights and emerging patterns. This dynamic data interpretation and modeling method enables a 
more significant understanding of subsurface processes, resulting in enhanced predictions and interpretations 
in geophysical investigations.

The interior point method (IPM) is a highly effective optimization technique widely utilized in various 
fields, such as geophysics, to address intricate inverse problems and optimization challenges11. Specifically, in 
geophysics, IPM is a reliable framework for effectively resolving extensive inverse problems associated with 
subsurface characterization, imaging, and parameter estimation11,12. The fundamental concept behind the 
interior point method centers on its capacity to navigate within the feasible region of a convex optimization 
problem by progressively advancing toward the interior of the possible set while satisfying the constraints. This 
approach enables the proficient resolution of optimization problems featuring many variables and constraints, 
making it particularly well suited for geophysical applications that involve high-dimensional data and complex 
geological structures. Furthermore, the interior point method offers scalability and computational efficiency 
advantages, making it suitable for handling large datasets and complex geological models encountered in 
geophysical studies12. By integrating IbI with IPM, our approach benefits from global exploration and local 
refinement, leading to improved convergence speed and solution quality.

This study focuses on developing a comprehensive framework for integrating hybrid optimization techniques 
into the inversion of geophysical DC resistivity data. By formulating an objective function that captures the 
misfit between observed and predicted data while incorporating logic-based constraints derived from geological 
knowledge, the proposed approach aims to improve the resolution of subsurface structures and enhance the 
characterization of geological features.

Through test examples and an analysis of inversion results, this study seeks to demonstrate the effectiveness 
and potential of the hybrid optimization approach in enhancing the inversion of DC resistivity data. These 
findings are relevant for advancing the field of geophysical data inversion and provide valuable insights for 
improving subsurface imaging techniques in geophysics and related disciplines.

Methodology
Hybrid optimization approach
Our novel approach combines the population-based metaheuristic IbI logic algorithm (ILA) with the interior 
point method (IPM) to address optimization problems. By combining the global search capabilities of the ILA 
with the local optimization efficiency of the IPM, we can effectively and efficiently solve the optimization problem. 
This process offers a novel opportunity to apply the ILA and IPM algorithms to solve an inversion optimization 
problem involving DC resistivity data. First, we utilize ILA to explore the search space systematically and generate 
diverse initial solutions for the inversion problem. Through innovative IBI logic theory-based strategies, the ILA 
quickly identifies promising regions of the search space without explicit knowledge of the problem structure. 
Subsequently, we employ the local optimization power of IPM to refine the solutions obtained from the ILA, 
ensuring accuracy while adhering to defined constraints. The best solutions from the ILA exploitation phase 
act as initial guesses for the IPM algorithm, facilitating further refinement. One drawback of local optimization 
algorithms is that they require reasonable starting solutions to achieve a high chance of success and prevent 
trapping in local minima. For this reason, we deployed the interior-point local search algorithm at the end of 
the ILA global search (Fig. 1). The synergy between ILA and IPM creates a feedback loop that enhances the 
optimization process by combining global exploration and local refinement, ultimately leading to improved 
convergence and solution quality.

The parameters determined by the ILA serve as an initial model for the IPM. The ILA generates an initial 
estimate of the subsurface resistivity distribution by leveraging its ability to interpret and integrate temporal and 
spatial data intelligibly. This initial model provides a starting point for the IPM, ensuring that the subsequent 
optimization process begins with a solution that is already closely aligned with the underlying geological 
structures. By starting from a more accurate initial model, the IPM can achieve faster convergence and improved 
solution quality. During the iterative process of the IPM, the parameters derived from the ILA are also used 
as a reference model. This reference model serves as a guide to ensure that the IPM maintains adherence to 
the geological constraints and complexity captured by the ILA. Specifically, the reference model influences the 
objective function by introducing additional terms that penalize deviations from the ILA-derived model. This 
integration helps the IPM refine the solution iteratively, balancing the minimization of the data misfit with the 
preservation of the geological plausibility provided by the ILA. Therefore, the ILA primarily drives the hybrid 
approach, and IPM is only applied at the end of the global search to refine these solutions and improve the model.

Formulation of the objective function and constraints
The main aim of every optimization algorithm is to search for an optimal solution to a given problem according 
to a set of constraints, typically by minimizing or maximizing the cost or objective function. This makes it a 
fundamental aspect of an optimization problem, significantly influencing the quest for an optimal solution. As 
a result, we establish our objective function by contrasting the theoretical data with the actual field observations 
or measured data. This process includes evaluating the L2 norms of the error related to the variance between 
field observations and theoretical data. Notably, the objective function assigns weights to accommodate outliers 
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or erroneous observations. The objective function used in our inversion problem is composed of two terms: 
a data misfit, which is a normalized difference between observed and modeled data, weighted by Wd, and a 
regularization term called the model misfit, which is proportional to the norm of the inverse of the variance 
of model parameters (σ), scaled by a regularization parameter (λfm). It penalizes significant variations in the 
model parameters to ensure smoothness. Consequently, the objective function is formulated as:

	 Mdcr (p) = misfitdata (p) +misfitmodel(p)� (1)

	
Mdcr (p) =

100.∥Wd.(dmodel (p)− dobs)∥2
∥dmodel(p)∥2

+ λfm.∥
1.

σ
∥
2
� (2)

	
Wd =

1

abs
(
dmodel(p)

)
∗ 0.025 � (3)

where Mdcr(p) is the objective function relative to the DC resistivity method. p represents the vector of the 
resistivity model parameters. Wd is the data weighting matrix, dobs represents the field-observed or field-
measured data, and dmodel (p) represents the modeled resistivity data obtained by solving the forward problem 
with parameter p. The parameter 0.025 in Eq. 3 represents a scaling factor that balances the weight allocated 
to each data point owing to probable inconsistencies between the field-observed and theoretical data. The 
parameter λ balances the trade-off between data misfit and model regularization, preventing overfitting of the 
data and ensuring model stability in the inversion results. Through extensive testing on various synthetic and 
field datasets, optimal values for these parameters were obtained. These values were found to consistently yield 
optimal results in terms of convergence and accuracy.

Details of the inversion algorithm and parameter settings
Incomprehensible but intelligible-in-time logics algorithm (ILA)
Global ILA is intended to address complex problems by understanding how logic changes over time due to 
learning and experience (knowledge). This algorithm aims to find a nonlogic from a set of nonlogics that are 
likely to become a logic (general or special) of the future8. To achieve this, the process involves three stages, 
excluding an initial data preparation phase, which sets the foundation for the entire iterative optimization process 
by defining some conditions or properties that guide the algorithm’s evolution. This phase creates clusters and 
assigns all the nonlogics (also referred to as populations or experts) specified by the user on the basis of the 
problem into groups via k-means clustering with the squared Euclidean distance (Eq. 4) as a distance metric to 
minimize within-cluster variance8.

	
SED = d (x, y) =

nNL∑
i=1

(xi − yi)
2� (4)

The number of attempts (tm) that the experts in a cluster make to enhance their initial nonlogic for each of the 
specified models is also determined at this stage. This calculation can be performed via

	
tm =

nt1

nm
=

ps1NT

nm
� (5)

Fig. 1.  Flowchart describing the hybrid optimization setup.
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where nm is the number of models and where nt1 is the number of iterations for the exploration phase (stage 1), 
which is the product of the maximum percentage of iterations in stage 1 (ps1) and the total number of iterations 
(NT ). The parameters are specified on the basis of the nature of the problem. Therefore, an appropriate selection 
of these parameters can increase the algorithm’s efficiency. The algorithm’s three main phases are the group 
work, integration, and exploitation or IbI logic search stages. The exploration phase is responsible for finding the 
best solutions in each available cluster in the global search space. It leverages the collective expertise of various 
“experts” or initial solutions. The best solutions from each cluster during the exploration stage are combined into 
a single group, and their NL values are updated on the basis of the available knowledge to refine and improve 
the quality of the solutions. This serves as the foundation for the integration phase. This phase of the algorithm 
aims to leverage the strengths of different experts (or solutions) to produce more comprehensive and robust 
solutions. Mirrashid and Naderpour 20238 thoroughly explained how to calculate the best solutions, update, 
and improve the knowledge of the combined experts at this stage. The exploitation phase produces the final 
optimized solutions in the search space. These solutions reflect the culmination of the iterative refinement and 
optimization process guided by the IbI framework. Each phase builds on the previous phase, ensuring a forward-
moving progression where solutions in each phase move to the subsequent phase without returning to earlier 
phases after completion. The structured progression from broad exploration to detailed refinement and final 
optimization ensures that the algorithm effectively and continuously identifies and optimizes solutions over 
time.

The interior point method (IPM)
The interior point method (IPM) is a widely used algorithm in optimization, especially when dealing with 
problems with constraints such as variable bounds. The mathematical derivation of the IPM process is presented 
in12 and13. However, we outline the overview of the IPM algorithm in Table 1, which provides a step-by-step 
guide on how the algorithm works. Let us examine the scenario where we aim to minimize a function f (x) 
subject to constraints on the variables x, both upper and lower bounds. Mathematically, this can be expressed as:

	 minxf (x)� (6)

subject to:

	 l ≤ x ≤ u, x ∈ Rn� (7)

Here, x belongs to the set of real numbers Rn, and l and u are vectors that represent the lower and upper bounds 
of the variables, respectively. The IPM operates by progressively enhancing a viable solution inside the feasible 
region defined by the constraints. The fundamental idea is to avoid boundaries at first and steadily converge 
toward the optimal solution by traversing through the interior of the feasible region12.

To address the limitations imposed by the constraints l ≤ x ≤ u, an interior point method (IPM) employs 
a barrier function that penalizes the objective function as the solution approaches the boundary of the feasible 
region13. A commonly used barrier function is the logarithmic barrier, denoted as Φ (x), which is defined as 
the negative sum of the natural logarithms of the differences between the upper and lower bounds and the 
corresponding variables:

	 Φ (x) = −
∑n

i=1
(ln (xi − li) + ln (ui − xi))� (8)

Combining the objective function and the barrier function transforms the constrained optimization problem 
into a sequence of unconstrained problems. This is achieved by introducing a barrier parameter µ > 0. The 

IPM algorithm outline

Step Description Equation

Initialization Choose an initial barrier parameter µ0. Define the convergence tolerance 
ε. Set k = 0 Let x0 be an initial point such that l < x0 < u

Iterative loop

For each iteration k:
Define the Objective Function with Barrier Term:

Fk (x) = f (x) + 1
µk
(−

∑n
i=1 (ln (xi − li) + ln (ui − xi)))

where f (x) is the objective function term

Calculate the Gradient gk (x): gk (x) = ∇f (x)− 1
µk

(
1

x−l −
1

u−x

)

Compute the Hessian Hk (x): Hk (x) = ∇2f (x) + 1
µk
diag

(
1

(x−l)2
+ 1

(u−x)2

)

Solve for Newton Direction ∆xk: Hk (xk)∆xk = −gk (xk)

Update the Solution x:
Update the Barrier Parameter µ:

xk+1 = xk + αk∆xk
µk+1 = βµk

Check for convergence If: ∥gk+1 (xk+1) ∥ < ε then stop Otherwise, set k = k + 1 and repeat the iteration steps

Table 1.  Overview of the interior-point optimization algorithm.
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parameter μ controls the barrier term in the IPM and is adaptively reduced during optimization. Its initial value 
and reduction schedule are selected on the basis of empirical validation to ensure fast convergence and accurate 
solutions. The barrier problem can then be formulated as minimizing the sum of the objective function f (x) 
and the barrier function µΦ (x):

	
minx

(
f (x) +

1

µ
Φ (x)

)
� (9)

The parameters used for the ILA and IPM algorithms are shown in Table 2. Fifty experts are considered, for 
which the number of iterations for each model is approximately 80, as given by Eq. 3. The greater the number 
of models selected, the lower the number of times the parameters of each model can be iteratively adjusted, 
which can potentially influence exploration, convergence, and the computational cost of finding optimal 
solutions. We allocate 33% of the total iterations (100) to the exploration phase of the global algorithm to ensure 
a comprehensive solution for space exploration. This helps to facilitate better initialization for the subsequent 
phases while still allowing ample resources for the integration and IbI logic search stages, promoting a balanced 
approach to optimization across all phases of the algorithm. We set the maximum number of iterations for 
finding the minimum in the IPM to 100. In contrast, the maximum number of objective function evaluations 
that the optimization solver can perform during local optimization is set to 100 times the dimensionality of 
the optimization problem (number of resistivity model parameters). In the context of our inversion problem, 
this is essentially the length of the parameter vector that the optimization algorithm adjusts to fit the observed 
resistivity data. The values of the parameters shown in Table 2 were determined on the basis of a combination 
of empirical testing, cross-validation, and sensitivity analysis to ensure optimal performance for our specific 
application. Each parameter was carefully chosen to balance the trade-off between convergence speed and 
inversion accuracy.

Test examples
In the hybrid optimization process, visualizing convergence plots offers valuable insights into the contributions 
made by the ILA algorithm. These contributions are shown through a convergence profile, which visually 
represents the distribution of contributions from the three phases within the ILA algorithm. The convergence 
profile illustrates the relationships among the contributions, fitness values, and number of iterations. By 
analyzing this chart, we gain a deeper understanding of the optimization progress at different stages of the ILA 
algorithm. This information helps identify patterns or trends that emerge during the optimization process. Once 
the best model is obtained through the ILA algorithm, it is passed on to local search techniques that employ 
the IPM algorithm. The results of this local search are then depicted in terms of minimizing fitness values over 
iterations. This allows for a more detailed analysis of the optimization progress and the effectiveness of the IPM 
algorithm in further improving the model. The optimal model is finally visualized as a 2D image plot to facilitate 
thorough analysis and interpretation. This plot provides a visual representation of the model, allowing objective 
examination of its characteristics and making informed decisions on the basis of the analysis.

Synthetic test
To evaluate the effectiveness of the proposed hybrid optimization algorithm, we created two synthetic 2D 
resistivity models that encompass two positive and two negative anomalies (Fig.  2). These synthetic models 
span a length of 240 m and a depth of 50 m, with the anomalies deliberately positioned near the center of the 
models. For the positive anomaly model, the background resistivity is set at 50 Ω-m, and each anomaly, which 
measures 30 m by 15 m, has a resistivity of 250 Ω-m (Fig. 2a). Similarly, for the negative anomaly model, the 
background resistivity is set at 250 Ω-m, and each anomaly, measuring 30 m by 15 m, has a resistivity of 50 Ω-m 
(Fig. 2b). To conduct the experiment, we used 49 electrodes with a 5-m spacing, utilizing the dipole‒dipole 
array configuration for data acquisition. The resulting synthetic data were subsequently processed and presented 
in Res2DInv format with the addition of 30% Gaussian noise, ensuring its readiness for the inversion process. 
Specifically, 30% Gaussian noise of the maximum amplitude was added to the synthetic data, ensuring that the 
noise level was proportional to the signal strength and more representative of realistic scenarios.

The results of inverting the synthetic DC resistivity data via the hybrid optimization approach, beginning 
with the ILA algorithm, are presented in Figs. 3 and 4 for the positive and negative anomaly models, respectively. 

Parameters Value

Number of nonlogics (experts)(nNL) 50

No of iterations (NT ) for IBI algorithm 100

No of models (nm) required for the (IBI) 10

Percentage of Iteration in Phase 1 (ps1) 33%

Percentage of Iteration in Phase 2 (ps2) 33%

Maximum Iterations Allowed for Local Optimization (MaxIter) 100

The number of function evaluations allowed for the local optimization,(MaxFun) 100 * No of model parameters

Table 2.  Parameters used in the hybrid optimization.
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Figures  3a and 4a depict the algorithm’s convergence over one hundred iterations, demonstrating how the 
algorithm iteratively reduces the misfit to achieve an optimal solution. Additionally, Figs. 3b and 4b illustrate the 
evolution of the misfit through the different phases of the ILA.

The hybrid optimization algorithm effectively reconstructs the geometry and amplitude of the resistive 
(positive anomalies) and conductive (negative anomalies) bodies in the synthetic models, as shown in Fig. 5a,b 

Fig. 3.  Efficacy of the ILA optimization algorithm in DC resistivity data inversion for the positive anomaly 
model; (a) convergence plot showing cost function reduction over iterations and (b) contributions of each ILA 
phase to cost function minimization, highlighting their interdependence.

 

Fig. 2.  Synthetic resistivity models showing pairs of (a) positive anomalies and (b) negative anomalies.
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for the positive anomalies and Fig. 5c,d for the negative anomalies. This demonstrates the algorithm’s ability 
to accurately reconstruct subsurface structures. However, a minor discrepancy is observed in the spatial 
distributions of the anomalous bodies in the inverted models; they appear slightly diffuse compared with the 
well-defined anomalies in the synthetic models. This discrepancy is likely due to the high noise level added to 
the synthetic data and the approximation errors inherent in numerical modeling. Furthermore, the sensitivity 
of resistivity measurements decreases with depth, making accurate resolution of deeper structures more 
challenging, which is a common limitation in DC resistivity inversion.

Overall, the hybrid optimization algorithm, which combines the ILA with IPM techniques, shows better 
performance in reconstructing anomalies in terms of geometry and amplitude than do traditional optimization 
algorithms such as the Gauss‒Newton and genetic algorithm approaches6,14.

Real data test
The real resistivity data used in this study were acquired by15 from an alluvial fan on the Gulf of Aqaba coast, 
as shown in the map produced using Google Earth imagery16 in Fig.  6. Specifically, a 2D resistivity profile 
was obtained using 64 nodes with an electrode spacing of 5 m, employing a Schlumberger–Wenner array 
configuration, and spanning a total length of 315 m. Additional details regarding the data acquisition process, 
including the field layout and geometry, are provided in Hanafy et al.15. The 315 m-long acquisition profile 
cut across the location of an extensive surface rupture in the study area just south of Haql town caused by the 
Nuweiba earthquake of November 1995 within the alluvial deposits of the Saudi Arabian coast15.

Fig. 5.  Display and comparison of the (a) synthetic positive anomaly DC resistivity model, (b) positive 
anomaly inverted resistivity model, (c) synthetic negative anomaly DC resistivity model, and (d) negative 
anomaly inverted resistivity model.

 

Fig. 4.  Efficacy of the ILA optimization algorithm in DC resistivity data inversion for the negative anomaly 
model; (a) convergence plot showing cost function reduction over iterations and (b) contributions of each ILA 
phase to cost function minimization, highlighting their interdependence.
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For the adaptability of the proposed algorithm in DC resistivity inversion, we decided to use a portion of the 
data totaling a length of 200 m. This approach directly compares the resistivity data and the known location of 
the normal fault in the study area, ensuring accurate correlation and validation of the results. Additionally, this 
approach offers the opportunity to assess the effectiveness of the proposed algorithm in mapping subsurface 
features such as faults and fractures within alluvial sediment and enhancing model interpretation15.

The inversion results obtained via the hybrid optimization algorithm are shown in Fig. 7, with the similar 
parameters listed in Table 2. Due to the challenging conditions of the real dataset, we initiated the hybrid algorithm 
with local optimization to refine the search space. This initial step was followed by global optimization to explore 
the broader solution space. Finally, the optimization process was completed using the local algorithm to achieve 
the best solution. As a result, the algorithm converged very quickly and was able to accurately reconstruct the 
subsurface resistivity distribution (Fig. 8).

Analysis of the accuracy and efficiency of the proposed approach
The proposed hybrid optimization approach was evaluated through test examples using synthetic data, real 
data applications, and statistical misfit analysis to determine its accuracy and efficiency. The results showed that 
the hybrid method excelled in reconstructing resistivity models, exhibiting significantly lower errors than the 
individual IbI logic and interior point methods did (Figs. 3, 4, 7). This was further supported by the alignment 
of the hybrid approach’s models with geological expectations in real-world applications, providing additional 
evidence of its accuracy (Figs. 5, 8).

In terms of efficiency, the hybrid approach demonstrated faster convergence rates (44 min for the synthetic test 
and 21 min for the real data test) and maintained a balanced computational cost. This was achieved by leveraging 

Fig. 6.  The study area situated on the eastern side of the Gulf of Aqaba is depicted in a Google Earth satellite 
image16. The image shows the resistivity profile in white and visible normal faults highlighted in red. The 
map was generated using Google Earth Pro (version 7.3.6, available at https://www.google.com/earth/). The 
resistivity profile and fault lines were overlaid manually using the image annotation tools within Microsoft 
PowerPoint software.
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the exploratory strength of the IbI logic and the local optimization capabilities of the interior point method. 
The hybrid method achieved quicker convergence while maintaining a feasible computational load, making it 
suitable for large-scale problems. Furthermore, scalability tests confirmed that the hybrid method retained its 
efficiency and accuracy advantages even when dealing with increasing problem sizes. This demonstrated the 
robustness and practicality of the hybrid approach for extensive geophysical inversion tasks.

Results and discussion
Interpretation of the results in the context of the research objectives
The resistivity model generated by the ILA algorithm does not exhibit distinct features; however, it effectively 
reduces the extensive search area to a more practical and plausible domain for the IPM algorithm. By refining 
the feasible search space, the ILA algorithm enhances the IPM and improves the overall efficiency of the hybrid 
optimization algorithm. This is evident in the optimal inverted resistivity models obtained from synthetic and 
actual data tests, demonstrating the ability of the algorithm to accurately delineate subsurface anomalies and 
discontinuities (Figs. 5, 8).

In terms of quantitative analysis, the comparison between the inverted resistivity model and the actual 
synthetic resistivity model revealed that the hybrid algorithm successfully reconstructed more than 90% 
of the resistivity anomaly. The reconstructed anomalies exhibited relatively similar geometric and resistivity 
values to those of the synthetic model, indicating the effectiveness of the algorithm in identifying subsurface 

Fig. 8.  The inverted resistivity model shows a significant anomalous discontinuity that is believed to indicate 
the presence of a fault (red dashed line). This observation is derived from the analysis of a real dataset.

 

Fig. 7.  Illustration of the inversion of real DC resistivity data, showing (a) the overall convergence plot of the 
algorithm and (b) phasewise convergence plots.

 

Scientific Reports |        (2024) 14:27558 9| https://doi.org/10.1038/s41598-024-78744-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


discontinuities and anomalous features. Furthermore, in the inverted real data test, a significant anomalous 
discontinuity was observed at approximately 120 m along the profile length (Fig. 8). This finding aligns with 
previous studies conducted by6 and15, who utilized similar datasets in their respective research. These studies 
interpreted the observed anomalies as fault zones in relation to the ground observations within the study area.

Discussion of the advantages and limitations of the hybrid method
The hybrid optimization algorithm, which combines the ILA and IPM techniques, demonstrates not only its 
ability to accurately invert DC resistivity data but also its ability to optimize computation time. The synthetic 
test results in an average runtime of 44 min (100 nonlogics and 100 iterations), whereas the real data test results 
are only 21 min when the same parameters are used. The algorithm demonstrates promising performance with 
reasonable runtimes in both synthetic and real data tests. However, the differences in the inversion depth, survey 
length, and meshing must be considered when evaluating its overall feasibility and attractiveness for solving 
nonlinear DC resistivity inversion problems. While the hybrid algorithm effectively maps discontinuities and 
anomalies in the test examples, its robustness in more challenging geologic formations can be further validated 
with additional data from diverse geologic settings. Additionally, it is important to note that this algorithm 
requires a bounded constraint to define the search space. In situations where an inappropriate search is defined 
in the input parameter, the algorithm may fail to converge or become trapped in a local minimum of the fitness 
function. Therefore, it is recommended to establish lower and upper bounds for the search domain on the basis 
of a priori information.

Implications of the findings for geophysical data inversion practices
This study highlights the effective adaptation of a population-based optimization algorithm that can manage 
vast datasets and input variables to address geophysical optimization challenges. Notably, this population-based 
algorithm can be smoothly integrated with a conventional local search technique, as evidenced in this study. This 
fusion results in resilient hybrid optimization algorithms that capitalize on the unique strengths of each method. 
By utilizing a population-based algorithm that excels in handling extensive datasets, geophysical inversions can 
be more efficient, particularly when dealing with intricate models and large datasets. The incorporation of local 
search methods enables the fine-tuning of solutions obtained from population-based algorithms. This combined 
strategy ensures highly precise geophysical models that closely represent the underlying physical characteristics. 
The development and successful implementation of these hybrid optimization strategies significantly improve 
the feasibility and potential for the widespread adoption of geophysical inversion methods. Accurate and 
dependable geophysical models produced from robust inversion techniques ultimately contribute to effective 
and precise data interpretation endeavors, leading to a deeper comprehension of the subsurface properties under 
investigation.

Conclusion
This study introduces a new hybrid optimization strategy that combines incomprehensible but intelligent-in-
time (IbI) logic with the interior point method (IPM) to increase the accuracy and efficiency of geophysical 
data inversion. The proposed method demonstrated satisfactory performance in both synthetic and real-world 
scenarios, producing resistivity models with reduced errors and better alignment with geological expectations. 
Misfit analysis and model comparison validated the precision of the hybrid approach, while its faster convergence 
rates and manageable computational load highlighted its efficiency.

This investigation makes a significant contribution to the field of geophysical data inversion by presenting 
a novel hybrid optimization technique that capitalizes on the advantages of global and local optimization 
methods. The integration of IbI logic and the interior point method overcomes the limitations of each technique, 
providing a robust solution for large-scale geophysical inversion tasks. This study offers a pragmatic and scalable 
approach, advancing the current methodologies for reconstructing resistivity models.

Subsequent studies should focus on exploring optimal strategies for integrating global and local optimization 
algorithms. Various methods for alternating between global IbI logic and local optimization procedures should 
be explored. Potential approaches involve transitioning on the basis of specific criteria, such as a decrease in 
misfit values after a set number of iterations or during periods of stagnation in the global optimization process. 
Through experimentation with these criteria, a more efficient hybrid algorithm can be developed, achieving 
faster convergence while maintaining reasonable computational efficiency. These advancements will further 
enhance the applicability and performance of hybrid optimization techniques in geophysical data inversion.
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