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1 Isotropic Elastic case

The 3D equations of motion for an isotropic linear-elastic medium can be written as:
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=
∂σxx
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+
∂σxy
∂y

+
∂σxz
∂z

+ fx

ρ
∂2uy
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=
∂σyx
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+
∂σyy
∂y

+
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+ fy

ρ
∂2uz
∂t2

=
∂σzx
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∂σzy
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+
∂σzz
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+ fz (1)

The tensor of elastic moduli for an isotropic medium is given as:
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σxx = λ(ϵxx + ϵyy + ϵzz) + 2µϵxx

σyy = λ(ϵxx + ϵyy + ϵzz) + 2µϵyy

σzz = λ(ϵxx + ϵyy + ϵzz) + 2µϵzz

σxy = 2µϵxy

σyz = 2µϵyz

σzx = 2µϵzx (2)
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∂ux
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)
=
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∂x

ϵyz =
1

2
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∂uy
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+
∂uz
∂y

)
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1

2

(
∂uy
∂y

+
∂uy
∂y

)
=
∂uy
∂y

ϵxz =
1

2

(
∂ux
∂z

+
∂uz
∂x

)
ϵzz =

1

2

(
∂uz
∂z

+
∂uz
∂z

)
=
∂uz
∂z

ϵxy =
1

2

(
∂ux
∂y

+
∂uy
∂x

)
Equation 2 cqn be written generally as:

σij = λϑδij + 2µϵij

where:

• λ and µ are the Lamé parameters (elastic constants)

• ϑ = ϵkk = ∇ · u is the dilatation (volumetric strain)

• δij is the Kronecker delta

• ϵij =
1
2
(ui,j + uj,i) is the strain tensor

• ui the displacement [m]

• σij the stress tensor [Pa]

• fi the source term [N/m3]

• ϵij the strain tensor []

• ρ the density [kg/m3]
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2 Isotropic ViscoElastic

Now, to describe a viscoelastic medium, we need to modify the stress-strain relation because

the conservation of momentum is independent of the material behavior. In linear viscoelasticity

the stress depends on the history of the strain rate. The viscoelastic stress-strain

relation can be described by generalizing the purely elastic case by introducing frequency-

dependent complex moduli (or quality factor, Q) or time-domain convolution

integrals described by the Boltzmann superposition and causality principle:

σ(t) =

∫ t

−∞
Ψ(t− τ)ϵ̇(τ) dτ

Ψ(t) is the relaxation function.

σij(t) =

∫ t

−∞
Ψijkl(t− τ)ϵ̇kl(τ) dτ

where Gijkl(t) is the relaxation tensor and εkl is the infinitesimal strain,

εkl =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
.

Using the time convolution notation:

a(t) ∗ b(t) =
∫ ∞

−∞
a(t− τ)b(τ)dτ =

∫ t

0

a(t− τ)b(τ)dτ

The above can be written compactly as:

σij = ψijkl ∗ ε̇kl (3)

For an isotropic viscoelastic medium, the constitutive relation takes the form:

σij = δij (ψλ ∗ ϑ̇) + 2ψµ ∗ ε̇ij (4)

3 Viscoelastic Stress Components

From Equation 4, we will calculate stress components:
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Normal Stresses (σxx, σyy, σzz)

σxx(t) = ψλ(t) ∗ ϑ̇(t) + 2ψµ(t) ∗
(
∂u̇(t)

∂x

)
σyy(t) = ψλ(t) ∗ ϑ̇(t) + 2ψµ(t) ∗

(
∂v̇(t)

∂y

)
σzz(t) = ψλ(t) ∗ ϑ̇(t) + 2ψµ(t) ∗

(
∂ẇ(t)

∂z

)
Shear Stresses (σxy, σyz, σxz)

σxy(t) = 2ψµ(t) ∗
[
1

2

(
∂u̇(t)

∂y
+
∂v̇(t)

∂x

)]
= ψµ(t) ∗

(
∂u̇(t)

∂y
+
∂v̇(t)

∂x

)

σyz(t) = ψµ(t) ∗
(
∂v̇(t)

∂z
+
∂ẇ(t)

∂y

)
σxz(t) = ψµ(t) ∗

(
∂u̇(t)

∂z
+
∂ẇ(t)

∂x

)
Summary and Final Notes:

Assembling all the components, we arrive at the complete equation:

σxx = ψλ ∗ ϑ̇+ 2ψµ ∗
∂u̇

∂x
σxy = ψµ ∗

(
∂u̇

∂y
+
∂v̇

∂x

)
σyy = ψλ ∗ ϑ̇+ 2ψµ ∗

∂v̇

∂y
σyz = ψµ ∗

(
∂v̇

∂z
+
∂ẇ

∂y

)
σzz = ψλ ∗ ϑ̇+ 2ψµ ∗

∂ẇ

∂z
σxz = ψµ ∗

(
∂u̇

∂z
+
∂ẇ

∂x

)
Physical Meaning of the Relaxation Functions:

• ψµ(t): The shear relaxation modulus. It describes the time-dependent stress response

to a step change in shear strain. It controls the dissipation of S-waves.

• ψλ(t): This function, along with ψµ(t), governs the relaxation of volumetric stress. It

controls the dissipation of P-waves.

In the frequency domain, these convolutions become simple multiplications, and the com-

plex moduli derived from ψλ(ω) and ψµ(ω) define the frequency-dependent velocities and

attenuation (quality factors QP and QS) of the medium.
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The constitutive equations in the frequency domain become

σ̃xx = iωψ̃λϑ̃+ 2iωψ̃µ
∂ũ

∂x
, σ̃xy = iωψ̃µ

(
∂ũ

∂y
+
∂ṽ

∂x

)
,

σ̃yy = iωψ̃λϑ̃+ 2iωψ̃µ
∂ṽ

∂y
, σ̃yz = iωψ̃µ

(
∂ṽ

∂z
+
∂w̃

∂y

)
,

σ̃zz = iωψ̃λϑ̃+ 2iωψ̃µ
∂w̃

∂z
, σ̃xz = iωψ̃µ

(
∂ũ

∂z
+
∂w̃

∂x

)
.

σ̃xx = λ(ω)ϑ̃+ 2µ(ω)
∂ũ

∂x
, σ̃xy = µ(ω)

(
∂ũ

∂y
+
∂ṽ

∂x

)
,

σ̃yy = λ(ω)ϑ̃+ 2µ(ω)
∂ṽ

∂y
, σ̃yz = µ(ω)

(
∂ṽ

∂z
+
∂w̃

∂y

)
,

σ̃zz = λ(ω)ϑ̃+ 2µ(ω)
∂w̃

∂z
, σ̃xz = µ(ω)

(
∂ũ

∂z
+
∂w̃

∂x

)
.

where the complex moduli are given by:

λ(ω) = iωψλ(ω) =

∫ ∞

−∞
ψ̇λ(ω)e

−iωt dt (5)

µ(ω) = iωψµ(ω) =

∫ ∞

−∞
ψ̇µ(ω)e

−iωt dt (6)

2D SH wave in ViscoElastic Media

SH Wave Configuration

For SH (Shear Horizontal) waves:

1. Particle motion in y-direction

2. Propagation in x-direction

3. Variation in z-direction

4. Only non-zero displacement: uy(x, z, t)

5. Only non-zero stresses: σxy, σzy
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So, constitutive relations are:

σxy = ψµ ∗
(
∂u̇

∂y
+
∂v̇

∂x

)
= ψµ ∗

∂v̇

∂x

σyz = ψµ ∗
(
∂v̇

∂z
+
∂ẇ

∂y

)
= ψµ ∗

∂v̇

∂z

In Frequency Domain (Fourier Transform)

σ̃xy = µ(ω)

(
∂ṽ

∂x

)

σ̃yz = µ(ω)

(
∂ṽ

∂z

)

Complex Shear Modulus

The complex shear modulus can be expressed as:

µ̃(ω) = µ1(ω) + iµ2(ω) = µR(ω) + iµI(ω)

Alternatively:

µ̃(ω) =

[
iµωη

iωη + µ

]
This is the complex shear modulus using the Maxwell Model

where:

• µ: Spring constant in mechanical models

• η: Dashpot viscosity

4 Wave Equation in Viscoelastic Media

Equation of Motion

∂σxy
∂x

+
∂σzy
∂z

= ρ
∂2uy
∂t2

Substituting viscoelastic constitutive relations:
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∂

∂x

(
µ̃(ω)

∂ũy
∂x

)
+

∂

∂z

(
µ̃(ω)

∂ũy
∂z

)
= ρ

∂2uy
∂t2

For homogeneous viscoelastic medium:

µ̃(ω)

(
∂2ũy
∂x2

+
∂2ũy
∂z2

)
= ρ

∂2uy
∂t2

µ̃(ω)

(
∂2ũy
∂x2

+
∂2ũy
∂z2

)
= −ρω2ũy

5 Plane Wave Solution

Assume plane wave solution:

uy(x, z, ω) = A(z)eikx

Compute derivatives:

∂2ũy
∂x2

= −k2A(z)eikx, ∂2ũy
∂z2

= A′′(z)eikx.

Substituting into the given equation

µ̃(ω)

(
∂2ũy
∂x2

+
∂2ũy
∂z2

)
= −ρω2,

we obtain

µ̃(ω)
(
A′′(z)− k2A(z)

)
eikx = −ρω2A(z)eikx

Dividing both sides by eikx gives

µ̃(ω)
(
A′′(z)− k2A(z)

)
= −ρω2A(z)

µ̃(ω)
(
A′′ − k2A

)
= −ρω2A.

Simplifying,

A′′ +

(
ρω2

µ̃(ω)
− k2

)
A = 0.

Let
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q2 :=
ω2

β2(ω)
− k2, q =

√
ω2

β2(ω)
− k2, β(ω) =

√
µ̃(ω)

ρ

Then the general solution is

A(z) =


C1 cos(qz) + C2 sin(qz), if q2 > 0,

C1e
iqz + C2e

−iqz, if q2 < 0.

uy(x, z, ω) = (Aeik rβz +Be−ik rβz)eikx

rβ =

√
c2

β2(ω)
− 1

6 General Solution for Love Wave in ViscoElastic Medium

For Love waves in a homogeneous layer, the general solution is:

uy(x, z, ω) = (Aeik rβz +Be−ik rβz)eikx

rβ =

√
c2

β2(ω)
− 1

σ̃yz = µ(ω)

(
∂ũy
∂z

)
∂uy
∂z

= iµkrβ
(
Aeikrβz −Be−ikrβz

)
eikx.

We can write this in matrix form as a state vector:[
ũy(z)

σ̃yz(z)

]
=

[
eikrβz e−ikrβz

iµkrβe
ikrβz −iµkrβe−ikrβz

][
A

B

]
(7)
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7 Thomson-Haskell Propagator Matrix Method for

Love Wave Dispersion Analysis

Thomson-Haskell propagator matrix method: is a frequency-domain method for plane

waves propagating in a multilayered half-space. A layer-by-layer solution, used for body-wave

propagation and surface-wave dispersion problems [2]. The is the standard and most elegant

approach for multi-layered media. Now, let’s reformulate this problem using propagator

matrices.

The Core Problem and Idea for Love Waves

Problem: Calculate the dispersion and attenuation of Love waves propagating in a stack of

N horizontal, viscoelastic layers over a semi-infinite viscoelastic half-space.

Core Idea (Propagator Matrix): The state of the SH wavefield at any depth z is described

by a State Vector (7) containing the relevant continuous field quantities (displacement and

shear stress). The Layer Propagator Matrix relates the state vector at the top of a layer

to its value at the bottom. By successively propagating the state vector from the half-space

to the free surface and applying the appropriate boundary conditions, the dispersion equation

for the layered medium can be derived.

The Foundation: State Vector and Field Matrix for SH Waves

For SH waves, the motion is purely in the y-direction (transverse to the propagation direction

x and depth z).

The State Vector, f(z), for SH waves is:

f(z) =

 uy(z)
σyz(z)


Where:

• uy(z): Amplitude of horizontal displacement.

• σyz(z): Shear stress component.

The general solution within a homogeneous, isotropic layer j is a superposition of upgoing

and downgoing plane waves:
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u(j)y (z) = Aje
iνj(z−zj−1) +Bje

−iνj(z−zj−1)

σ(j)
yz (z) = µj

∂u
(j)
y

∂z
= iµjνj

(
Aje

iνj(z−zj−1) −Bje
−iνj(z−zj−1)

)
where:

• νj = k
√

(c/βj)2 − 1 is the vertical wavenumber in layer j (can be real or complex).

• Aj is the amplitude of the upgoing wave.

• Bj is the amplitude of the downgoing wave.

• µj is the complex shear modulus of layer j (incorporating viscoelasticity).

• k = ω/c is the horizontal wavenumber.

We define the Amplitude Vector, aj:

aj =

[
Aj

Bj

]
The mathematical link between the state vector and the amplitude vector is given by the

Field Matrix, Ej(z):

f(z) = Ej(z)aj

Explicitly, this is: [
uy(z)

σyz(z)

]
=

[
eiνj(z−zj−1) e−iνj(z−zj−1)

iµjνje
iνj(z−zj−1) −iµjνje

−iνj(z−zj−1)

][
Aj

Bj

]

Derivation of the Layer Propagator Matrix for SH Waves

We want to relate the state vector at the top of a layer (z = zt = zj−1) to the state vector at

the bottom (z = zb = zj).

1. State at the Bottom: fbottom = Ej(zb)aj. We can solve for the amplitude vector:

aj = E−1
j (zb)fbottom

The inverse of the 2x2 field matrix is straightforward to compute:
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E−1
j (z) =

1

2

[
e−iνj(z−zj−1) − i

µjνj
e−iνj(z−zj−1)

eiνj(z−zj−1) i
µjνj

eiνj(z−zj−1)

]

2. State at the Top: ftop = Ej(zt)aj.

3. Connect Top to Bottom: Substitute the expression for aj:

ftop = Ej(zt)
[
E−1

j (zb)fbottom
]
= Ej(zt)E

−1
j (zb)︸ ︷︷ ︸

Tj

fbottom

We define the Layer Propagator Matrix, Tj:

Tj = Ej(zt)E
−1
j (zb)

Let’s compute this explicitly. Set the local coordinate so the top of the layer is at z′ = 0 and

the bottom is at z′ = hj. Thus zt = 0, zb = hj.

Ej(0) =

[
1 1

iµjνj −iµjνj

]

Ej(hj) =

[
eiνjhj e−iνjhj

iµjνje
iνjhj −iµjνje

−iνjhj

]
The product Tj = Ej(0)E

−1
j (hj) simplifies to (using hyperbolic functions cosh(x) = (ex +

e−x)/2, sinh(x) = (ex − e−x)/2):

Tj =

[
cos(νjhj)

sin(νjhj)

µjνj

−µjνj sin(νjhj) cos(νjhj)

]

This is the Thomson-Haskell propagator matrix for Love waves!

Physical Meaning of Tj: This matrix is a property of the layer. If we know the displace-

ments and stresses at the bottom, we can find them at the top by simply multiplying by Tj.

It ”propagates” the SH wave solution upwards through the layer.

Building for General N-Layer System

If we have a N number of layers over a half-space (Layer n+ 1). The interfaces are at depths

z1, z2, z3, z4, . . . zn. The thickness of layer j is hj.
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At each interface, the state vector is continuous (welded contact):

f
(j)
bottom = f

(j+1)
top

Using the propagator matrix for each layer:

f
(j)
top = Tjf

(j)
bottom = Tjf

(j+1)
top

We can chain these relations from the half-space up to the top layer:

f
(1)
top = T1f

(2)
top = T1T2f

(3)
top = T1T2T3f

(4)
top = T1T2T3 . . .Tnf

(n+1)
top

Let’s define the Global Propagator Matrix, G:

G = T1T2T3T4T5 . . .Tn

So the final relationship is:

fsurface = Gfhalfspace-top

Where:

• fsurface = f
(1)
top is the state vector at the free surface (z = 0).

• fhalfspace-top = f
(n+1)
top is the state vector at the top of the half-space.

Applying Boundary Conditions and Finding Love Waves

Boundary Condition 1: Free Surface (z=0)

At the free surface, the shear stress is zero.

fsurface =

[
uy(0)

0

]

Boundary Condition 2: Radiation Condition in the Half-Space (z ≥ zn)

In the half-space (Layer n+1), the solution must be purely downgoing and evanescent.

There can be no wave returning from infinity, so the amplitude of the upgoing wave An+1 = 0.

The general solution in the half-space is:
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u(n+1)
y (z) =

(
An+1e

iνn+1z +Bn+1e
−iνn+1z

)
eikx

σ(n+1)
yz (z) = iµn+1νn+1

(
An+1e

iνn+1(z−zn) −Bn+1e
−iνn+1(z−zn)

)
eikx

Since An+1 = 0:

u(n+1)
y (z) = Bn+1 e

−iνn+1(z−zn)

σ(n+1)
yz (z) = −iµn+1νn+1Bn+1e

−iνn+1(z−zn)

Therefore, at the top of the half-space (z = zn), the state vector is:

fhalfspace-top =

[
1

−iµn+1νn+1

]
Bn+1

We can write this as:

fhalfspace-top = VBn+1, where V =

[
1

−iµn+1νn+1

]
Here, V is the boundary matrix for the half-space.

Formulating the Dispersion Equation

Substitute the half-space condition into the global propagation relation:

fsurface = Gfhalfspace-top = GVBn+1

Write this out:[
uy(0)

0

]
=

[
G11 G12

G21 G22

][
1

−iµn+1νn+1

]
Bn+1 =

[
G11 − iµn+1νn+1G12

G21 − iµn+1νn+1G22

]
Bn+1

This gives us two equations:

1. uy(0) = (G11 − iµn+1νn+1G12)Bn+1

2. 0 = (G21 − iµn+1νn+1G22)Bn+1
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For a non-trivial solution (Bn+1 ≠ 0), the second equation must be zero. This is our

Dispersion Equation:

D(ω, c) = G21(ω, c)− iµn+1(ω)νn+1(ω, c)G22(ω, c) = 0

Summary and Numerical Solution for 5 Layers Over a Half-space

To find the Love wave modes for the 5-layer system:

The dispersion equation is given as:

D(ω, c) = G21(ω, c)− iµ6(ω)ν6(ω, c)G22(ω, c) = 0

1. For a given frequency ω and a trial complex phase velocity c, calculate the vertical

wavenumber νj for each of the 5 layers and the half-space.

νj =
ω

c

√(
c

βj

)2

− 1

(Ensure the branch is chosen so Im(ν6) > 0 for decay in the half-space).

2. For each layer j, calculate its propagator matrix Tj:

Tj =

[
cos(νjhj)

sin(νjhj)

µjνj

−µjνj sin(νjhj) cos(νjhj)

]

3. Multiply the matrices to get the global propagator:

G = T1T2T3T4T5

4. Evaluate the dispersion function:

D(ω, c) = G21 − iµ6ν6G22

5. Search for the roots D(ω, c) = 0. Each root c(ω) for which β1 < Re(c) < β6 is a

valid Love wave mode. The real part of c gives the phase velocity, and the imaginary

part describes the attenuation due to viscoelasticity.

6. Repeat over frequency range to get dispersion curves c(ω)
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This process systematically applies the Thomson-Haskell method to the 5-layer Love wave

problem, reducing the complex boundary value problem to a robust numerical root-finding

exercise.

Calculating all elements of the global propagator matrix, G

Calculating all elements of the global propagator matrix G is the core computational step.

1. Mathematical Definition

For an N-layer system:

G = T1T2T3T4T5 . . .TN

where each layer matrix is:

Tj =

 cos(νjhj)
sin(νjhj)

µjνj
−µjνj sin(νjhj) cos(νjhj)


2. Step-by-Step Multiplication

Let’s multiply these matrices step by step. We’ll show both the general pattern and specific

element calculations.

Step 1: Define Layer Matrices Explicitly

For layer j, let:

Tj =

(
Cj S ′

j

−Sj Cj

)
where:

Cj = cos(νjhj), Sj = µjνj sin(νjhj), S ′
j =

sin(νjhj)

µjνj

Important Identity:

Sj · S ′
j = sin2(νjhj)

Step 2: Multiply First Two Layers

Let G(2) = T1T2.
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G(2) =

(
C1 S ′

1

−S1 C1

)(
C2 S ′

2

−S2 C2

)
Element-by-element calculation:

G
(2)
11 = C1C2 − S ′

1S2,

G
(2)
12 = C1S

′
2 + S ′

1C2,

G
(2)
21 = −S1C2 − C1S2,

G
(2)
22 = −S1S

′
2 + C1C2.

Thus:

G(2) =

(
C1C2 − S ′

1S2 C1S
′
2 + S ′

1C2

−S1C2 − C1S2 C1C2 − S1S
′
2

)
Step 3: Multiply with Third Layer

Let G(3) = G(2)T3.

G(3) =

(
G

(2)
11 G

(2)
12

G
(2)
21 G

(2)
22

)(
C3 S ′

3

−S3 C3

)
Elements:

G
(3)
11 = G

(2)
11 C3 −G

(2)
12 S3,

G
(3)
12 = G

(2)
11 S

′
3 +G

(2)
12 C3,

G
(3)
21 = G

(2)
21 C3 −G

(2)
22 S3,

G
(3)
22 = G

(2)
21 S

′
3 +G

(2)
22 C3.

Step 4: General Recursive Formula

We can see a pattern! For G(k) = G(k−1)Tk:

G
(k)
11 = G

(k−1)
11 Ck −G

(k−1)
12 Sk,

G
(k)
12 = G

(k−1)
11 S ′

k +G
(k−1)
12 Ck,

G
(k)
21 = G

(k−1)
21 Ck −G

(k−1)
22 Sk,

G
(k)
22 = G

(k−1)
21 S ′

k +G
(k−1)
22 Ck.

Step 5: Complete 5-Layer Calculation
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Apply this recursively.

Initialize: G(1) = T1

G(1) =

(
C1 S ′

1

−S1 C1

)
Layer 2: G(2) = G(1)T2

G
(2)
11 = C1C2 − S ′

1S2,

G
(2)
12 = C1S

′
2 + S ′

1C2,

G
(2)
21 = −S1C2 − C1S2,

G
(2)
22 = −S1S

′
2 + C1C2.

Layer 3: G(3) = G(2)T3

G
(3)
11 = G

(2)
11 C3 −G

(2)
12 S3,

G
(3)
12 = G

(2)
11 S

′
3 +G

(2)
12 C3,

G
(3)
21 = G

(2)
21 C3 −G

(2)
22 S3,

G
(3)
22 = G

(2)
21 S

′
3 +G

(2)
22 C3.

Layer 4: G(4) = G(3)T4

G
(4)
11 = G

(3)
11 C4 −G

(3)
12 S4,

G
(4)
12 = G

(3)
11 S

′
4 +G

(3)
12 C4,

G
(4)
21 = G

(3)
21 C4 −G

(3)
22 S4,

G
(4)
22 = G

(3)
21 S

′
4 +G

(3)
22 C4.

Layer 5 (Final): G = G(5) = G(4)T5

G11 = G
(4)
11 C5 −G

(4)
12 S5,

G12 = G
(4)
11 S

′
5 +G

(4)
12 C5,

G21 = G
(4)
21 C5 −G

(4)
22 S5,

G22 = G
(4)
21 S

′
5 +G

(4)
22 C5.
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8 Viscoelastic Model

So far the details of the relaxation function are not defined. Therefore, the objective here

is to find a relaxation function with a frequency-independent Q(ω)-value. For the

application in seismic modelling, it is important that the visco-elastic model can describe a

frequency-independent Q(ω). We can construct viscoelastic models composed of two basic

elements.

Generalized Maxwell-model

Figure 1: Generalized Maxwell Model

In GMB, we add multiple Maxwell models in parallel, which yields the Generalized Maxwell

model or Generalized Maxwell body (GMB), also known as Maxwell-Wiechert model. By the

superposition of multiple Maxwell models with different elastic modules µl and viscosities ηl,

we can achieve a constant Q-value over a given frequency range.

The Hooke element (spring), representing the linear elastic medium

σHooke = µϵ

or

ϵHooke =
σ

µ

18
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The Newton element (dashpot), representing the viscous damping part with the stress-

strainrate relation:

σNewton = ηϵ̇

or

ϵ̇Newton =
σ

η

where η denotes the viscosity of the medium.

Because we assemble the Maxwell SLS model with additional L Maxwell bodies in parallel,

we have to add the stresses in frequency domain:

σ̃GMB = σ̃SLSM +
L∑
l=2

σ̃Maxwell,l

Inserting the stresses

σ̃SLSM =

(
µ0 +

iµ1ωη1
iωη1 + µ1

)
ϵ̃

σ̃Maxwell,l =
iµlωηl
iωηl + µl

ϵ̃ (8)

we have the frequency-domain stress-strain relation for the GMB:

σ̃GMB =

(
µ0 +

iµ1ωη1
iωη1 + µ1

+
L∑
l=2

iµlωηl
iωηl + µl

)
ϵ̃

We can move the second term into the sum over the L Maxwell-models:

σ̃GMB =

(
µ0 +

L∑
l=1

iµlωηl
iωηl + µl

)
ϵ̃

Introducing the relaxation frequencies:

ωl :=
µ1

ηl

leads to
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σ̃GMB =

(
µ0 +

L∑
l=1

iµlω

iω + µ1

ηl

)
ϵ̃ =

(
µ0 +

L∑
l=1

iµlω

iω + ωl

)
ϵ̃

I want to simplify the complex modulus

µ̃GMB = µ0 +
L∑
l=1

iµlω

iω + ωl

First we estimate the relaxed shear modulus:

µ̃GMB,R = lim
ω→0

µ̃GMB = µ0

and unrelaxed shear modulus:

µ̃GMB,U = lim
ω→∞

µ̃GMB = µ0 +
L∑
l=1

iµlω

iω
(
1 + ωl

iω

)
µ̃GMB,U = lim

ω→∞
µ̃GMB = µ0 +

L∑
l=1

µl

1− iωl

ω

As ω → ∞, ωl

ω
→ 0, so:

µl

1− iωl

ω

→ µl

1
= µl.

µ̃GMB,U = lim
ω→∞

µ̃GMB = µ0 +
L∑
l=1

µl

With the modulus defect or relaxation of modulus

δµ = µ̃GMB,U − µ̃GMB,R =

(
µ0 +

L∑
l=1

µl

)
− µ0 =

L∑
l=1

µl

For individual mechanisms:

δµl = µl

since each Maxwell body contributes µl to the total modulus defect.
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Normalization with weights al

Write each branch defect as a fraction of the total defect,

δµl = al, δµ

where the weights al satisfy:

L∑
l=1

al = 1

Since δµl = µl, this gives µl = al, δµ.

So, each µl express as a fraction of the total modulus defect:

µl = alδµ

Verification:

L∑
l=1

µl =
L∑
l=1

alδµ = δµ
L∑
l=1

al = δµ · 1 = δµ

which matches our earlier result.

Substitute µl = alδµ into the original expression:

µ̃GMB(ω) = µ0 +
L∑
l=1

i(alδµ)ω

iω + ωl

µ̃GMB(ω) = µ0 + δµ

L∑
l=1

ialω

iω + ωl

(9)

where µ0 denotes the relaxed shear modulus, δµ the modulus defect, L the number

of Maxwell bodies, al, ωl weighting coefficients and relaxation frequencies of the l-th

Maxwell body to achieve a constant Q-spectrum, while ω is the circular frequency within the

frequency range of the source wavelet.

Final Note:

1. Low-frequency limit: All Maxwell bodies are relaxed → only µ0 remains

2. High-frequency limit: All Maxwell bodies are stiff → each contributes µl
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3. Modulus defect: Difference between high and low frequency limits =
∑
µl

4. Weight normalization: Distribute total defect among mechanisms with weights al

Relaxation Function Derivation: Transformation of Complex

Modulus to Time Domain

Deriving the Relaxation Function

We need to transform the complex modulus above to time-domain by inverse Fourier transform

leading to the relaxation function.

Given the complex modulus in the frequency domain:

µ̃GMB(ω) = µ0 + δµ
L∑
l=1

ialω

iω + ωl

= µR + δµ
L∑
l=1

ialω

iω + ωl

We want to transform this to the time domain relaxation modulus G(t).

Relationship between complex modulus and relaxation modulus

In linear viscoelasticity, the complex modulus µ̃(ω) is related to the relaxation modulus Ψ(t)

via:

µ̃(ω) = iωF [Ψ(t)](ω)

where F [Ψ(t)](ω) =
∫∞
0

Ψ(t)e−iωtdt is the Fourier transform (for causal Ψ(t)).

µ̃(ω) = iω

∫ ∞

0

Ψ(t)e−iωtdt

µ̃(ω) = iω Ψ̂(ω)

This means µ̃(ω) is the Fourier transform of the derivative of Ψ(t), or equivalently:

µ̃(ω)

iω
=

∫ ∞

0

Ψ(t)e−iωtdt

Thus, Ψ(t) is the inverse Fourier transform of µ̃(ω)/(iω).
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So to get Ψ(t), we take the inverse Fourier transform: ‘

Ψ(t) =
1

2π

∫ ∞

−∞

µ̃(ω)

iω
eiωtdω.

Rewrite the Complex Modulus

Divide the given expression by iω:

µ̃(ω)

iω
=
µ0

iω
+ δµ

L∑
l=1

al
iω + ωl

Switch to Laplace domain

Using the substitution s = iω (one-sided Fourier transform)

Relaxation modulus Ψ(t) has Laplace transform Ψ(s) with:

µ̃(ω) = sΨ(s)
∣∣
s=iω

.

So:

Ψ(s) =
µ̃(s)

s
=
µ0

s
+ δµ

L∑
l=1

al
s+ ωl

where Ψ(s) is the Laplace transform of Ψ(t).

Inverse Laplace transform

Taking the inverse Laplace transform term by term:

We know:

L−1

{
1

s

}
= 1, t ≥ 0

L−1

{
1

s+ ωl

}
= e−ωlt

Final time-domain expression

Therefore, the relaxation modulus in the time domain is:
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Ψ(t) = µ0 + δµ

L∑
l=1

ale
−ωlt (10)

for t ≥ 0.

Ψ(t) =

{
µ0 + δµ

L∑
l=1

ale
−ωlt

}
·H(t) (11)

where H(t) is the Heaviside step function.

This is the stress relaxation function corresponding to the given complex modulus 9.

Using the definition of the modulus defect as the difference between the unrelaxed µu and

relaxed shear modulus µ0:

δµ = µu − µ0

we can replace the relaxed by the unrelaxed modulus [1, 3]:

Ψ(t) =

{
µu − δµ

L∑
l=1

al

(
1− e−ωlt

)}
·H(t) (12)

So, we are going to use this function in our dispersion numeriacal calculation above.

Transforming the Relaxation Function 12 to Frequency Domain

Given:

Ψ(t) =

{
µu − δµ

L∑
l=1

al

(
1− e−ωlt

)}
·H(t)

where H(t) is the Heaviside step function.

Rewrite:

Ψ(t) = µuH(t)− δµ
L∑
l=1

al
[
1− e−ωlt

]
H(t)
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Ψ(t) = µuH(t)− δµ
L∑
l=1

alH(t) + δµ
L∑
l=1

ale
−ωltH(t)

Note:
∑L

l=1 al is just a constant.

Let A =
∑L

l=1 al.

Then:

Ψ(t) = µuH(t)− δµAH(t) + δµ
L∑
l=1

ale
−ωltH(t)

Ψ(t) = [µu − δµA]H(t) + δµ
L∑
l=1

ale
−ωltH(t)

Fourier transform

We use the Fourier transform definition:

F{f(t)}(ω) =
∫ ∞

−∞
f(t)e−iωtdt

We know:

F{H(t)}(ω) = πδ(ω) +
1

iω

(in the sense of distributions; the 1/(iω) is interpreted via the Sokhotski–Plemelj formula,

often written as 1
iω

+ πδ(ω)).

Also:

F{e−αtH(t)} =
1

α + iω
, α > 0.

Transform of first term

First term: (µu − δµA)H(t)

F {(µu − δµA)H(t)} = (µu − δµA)

[
πδ(ω) +

1

iω

]
Transform of second term

Second term: δµ
∑L

l=1 ale
−ωltH(t)
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F
{
δµ ale

−ωltH(t)
}
= δµ al ·

1

ωl + iω

So:

F

{
δµ

L∑
l=1

ale
−ωltH(t)

}
= δµ

L∑
l=1

al
ωl + iω

Combine

Ψ̃(ω) = (µu − δµA)

[
πδ(ω) +

1

iω

]
+ δµ

L∑
l=1

al
ωl + iω

Simplify the constant A

Recall:

A =
L∑
l=1

al

We can combine the 1/(iω) term with the sum over al/(ωl + iω) if desired, but often in

rheology or viscoelasticity, they keep it as a sum of Debye terms plus a singular term at

ω = 0.

Let’s check: The 1
iω

term coefficient is µu − δµA.

But note: sometimes the model is such that Ψ(t→ ∞) = µu − δµA = µR (relaxed modulus),

and Ψ(0+) = µu (unrelaxed modulus). Indeed, at t = 0+, e−ωlt = 1, so

Ψ(0+) = µu − δµ

L∑
l=1

al(1− 1) = µu.

At t→ ∞, e−ωlt → 0, so

Ψ(∞) = µu − δµ

L∑
l=1

al = µu − δµA.

So indeed, µR = µu − δµA.

Thus:
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Ψ̃(ω) = µR

[
πδ(ω) +

1

iω

]
+ δµ

L∑
l=1

al
ωl + iω

This is the relaxation function 12 in frequency domain.

Interpret in complex modulus G∗(ω)

In rheology, the complex modulus G∗(ω) = iωΨ̃(ω) for a stress relaxation modulus Ψ(t).

Let’s compute G∗(ω):

G∗(ω) = iωΨ̃(ω) = iωF [Ψ(t)H(t)]

= iω

[
µR

(
πδ(ω) +

1

iω

)
+ δµ

L∑
l=1

al
ωl + iω

]
The term iω · µRπδ(ω) = iπµRωδ(ω) = 0 because ωδ(ω) = 0.

The term iω · µR

iω
= µR.

So:

G∗(ω) = µR + δµ
L∑
l=1

iωal
ωl + iω

This is a standard generalized Maxwell model form:

G∗(ω) = µR +
L∑
l=1

iωδµal
ωl + iω

with relaxation strengths δµal for mode l.

Relaxation modulus Ψ(t) in frequency domain

Ψ̃(ω) = µR

[
πδ(ω) +

1

iω

]
+ δµ

L∑
l=1

al
ωl + iω

where µR = µu − δµ
∑L

l=1 al.

In summary, iωΨ̃(ω) = iωF [Ψ(t)H(t)] also give the complex modulus which is aGeneralized

27



Love Wave in an Isotropic Viscoelastic Media

Maxwell Model (GMB) in this case.

GMB stress-strain relation

We can then inserting the relaxation function into the viscoelastic stress-strain relation:

σ =

∫ t

−∞
Ψ̇(t− t′)ϵ(t′)dt′ = Ψ̇ ∗ ϵ

we have to take its first time derivative of Ψ(t):

Ψ(t) =

{
µu − δµ

L∑
l=1

al

(
1− e−ωlt

)}
·H(t) (13)

Ψ̇(t) = −δµ
L∑
l=1

alωle
−ωlt ·H(t) +

{
µu − δµ

L∑
l=1

al

(
1− e−ωlt

)}
· δ(t)

This is the time derivative of the relaxation function Ψ(t).

But at t = 0, e−ωlt = 1, (since δ(t) peaks out t = 0) so:

µu − δµ
L∑
l=1

al(1− 1) = µu.

Thus the given δ(t) coefficient simplifies to µu, matching our result.

Final derivative

Ψ̇(t) = −δµ
L∑
l=1

alωle
−ωltH(t) + µu δ(t)

with δµ = µu − µ0.

Insert into stress-strain relation

σ(t) =

∫ t

−∞
Ψ̇(t− t′)ϵ(t′) dt′

= µuϵ(t)− δµ
L∑
l=1

alωl

∫ t

−∞
e−ωl(t−t′)H(t− t′)ϵ(t′) dt′
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Since H(t− t′) = 1 for t′ ≤ t, we can write:

σ(t) = µuϵ(t)− δµ

L∑
l=1

alωl

∫ t

−∞
e−ωl(t−t′)ϵ(t′) dt′

This is the viscoelastic stress-strain relation for the GMB model.
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