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1 Isotropic Elastic case

The 3D equations of motion for an isotropic linear-elastic medium can be written as:
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The tensor of elastic moduli for an isotropic medium is given as:
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Equation 2 cqn be written generally as:

where:

Jij = )\’19(51] + 2,LL€Z‘j

e )\ and p are the Lamé parameters (elastic constants)

e U = ¢, = V - uis the dilatation (volumetric strain)

d;; is the Kronecker delta

. 1 . .
® cj = 5(u;; + uj;) is the strain tensor

u; the displacement [m]

€;; the strain tensor ||

p the density [kg/m?]

o;; the stress tensor [Pa]

f; the source term [N/m?]
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2 Isotropic ViscoElastic

Now, to describe a viscoelastic medium, we need to modify the stress-strain relation because
the conservation of momentum is independent of the material behavior. In linear viscoelasticity
the stress depends on the history of the strain rate. The viscoelastic stress-strain
relation can be described by generalizing the purely elastic case by introducing frequency-
dependent complex moduli (or quality factor, ()) or time-domain convolution

integrals described by the Boltzmann superposition and causality principle:

o(t) = / U(t—71)é(T)dr

— 00

W (t) is the relaxation function.

0ii(t) = / Wit — 7)éw(r) dr

—00

where G;x(t) is the relaxation tensor and ¢y is the infinitesimal strain,

ey = L (O, Ou
Mo\ 0w " oxy)

Using the time convolution notation:

o0

a(t) = b(t) = /OO a(t — 7)b(T)dr = /o a(t —7)b(r)dr

The above can be written compactly as:

0ij = Yijki * Epl (3)

For an isotropic viscoelastic medium, the constitutive relation takes the form:

gij = 05 (V% 19) + 29, * & (4)

3 Viscoelastic Stress Components

From Equation 4, we will calculate stress components:
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Normal Stresses (0,4, 0y, 0,2)

() = ha(t) * D(t) + 20b,, (1) * (ag(xt)>
)

Q
<

Tyy(t) = Un(t) ¥ D(t) + 20, (1) * ( a(t)

)
Shear Stresses (0., 0ys, 0s:)
walt) =20t [3 (G4 552 | =i (%5704 )

0,0 (1) = () = (ag(zt) N ag;))

ounlt) = (1) » (ag(zt) N &abit))

Summary and Final Notes:

<

QD
—~~

02 () = () * I(t) + 20 (1) *

Assembling all the components, we arrive at the complete equation:
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Physical Meaning of the Relaxation Functions:

e ,(t): The shear relaxation modulus. It describes the time-dependent stress response

to a step change in shear strain. It controls the dissipation of S-waves.

e 5(t): This function, along with v, (t), governs the relaxation of volumetric stress. It

controls the dissipation of P-waves.

In the frequency domain, these convolutions become simple multiplications, and the com-
plex moduli derived from ) (w) and #,(w) define the frequency-dependent velocities and

attenuation (quality factors Qp and Qg) of the medium.
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The constitutive equations in the frequency domain become

Gaw = iwiy0 + 2zw$u%, Gay = iwih, (8—5 + %) ,
Gyy = fwihy0 + 2@@@—2, Gye = iwi, (% + %Z) :
G, = w0 + 2z'wug—f, G = 1WA, (% + %) .
Fae = AMw)D + 2u(w)%, Oy = p(w) (g_z + %) ;
iy = M)+ 20) 0 =u) (54 50 ).
oo = ) + 2(0) 27 =) (G4 55,

where the complex moduli are given by:

Aw) = iwin(w) = [ daw)e ™ d (5)

pw) = iw,(w) = /_00 P (w)e ™t dt (6)

2D SH wave in ViscoElastic Media

SH Wave Configuration
For SH (Shear Horizontal) waves:

1. Particle motion in y-direction

2. Propagation in x-direction

3. Variation in z-direction

4. Only non-zero displacement: wu,(z, 2, 1)

5. Only non-zero stresses: 04y, 0.y
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So, constitutive relations are:

ou  ov v
"w—%*(a—ﬂ%)—%*%
00 Ow 00
"yz—%*(aw—y)—%*&

In Frequency Domain (Fourier Transform)

Complex Shear Modulus

The complex shear modulus can be expressed as:

filw) = (W) +ipe(w) = pr(w) + i (w)

Alternatively:

) = | B

W)= |——

s wn +

This is the complex shear modulus using the Maxwell Model
where:

e 41 Spring constant in mechanical models

e 1: Dashpot viscosity

4 Wave Equation in Viscoelastic Media

Equation of Motion

004y 004, 0*uy,

or 0. Poe

Substituting viscoelastic constitutive relations:
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o (. 0w\ 0 (. .0u\ 0%,
o (“<“>a—x) 5 (“(‘”)E) = e

For homogeneous viscoelastic medium:

() (82ﬂy N 32ﬂy> _ pf)?uy

0x? 022 ot?
_ 0% 9%u -

5 Plane Wave Solution

Assume plane wave solution:

uy (7, 2,w) = A(2)e*”

Compute derivatives:
2 ~
01,
Ox?
Substituting into the given equation

. 0% 0%
:u(w> (axzy + azgy) = _pw27

0%ty
022

— —kQA(Z)Gikx, _ A”(z)eikx.

we obtain

fi(w) (A" (z) — kQA(z))e“” = —pu?A(2)er

Dividing both sides by e** gives

(W) (A (2) = K A(2)) = —puw? A(2)

fi(w) (A" — k*A) = —pw? A.

Simplifying,

2
m+<@’—H)A:o

Let
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2-_w2_2 :w_Q_z WZM
TTrw " T Ew T T,

Then the general solution is

C cos(qz) + Cysin(qz), if ¢* > 0,
A(z) =
Cleiqz + Cge_iqz, if q2 < 0.

uy(:c, Z,UJ) — (Aeikr@z + Be—ikrﬁz)eikx

N B W)

6 General Solution for Love Wave in ViscoElastic Medium

For Love waves in a homogeneous layer, the general solution is:

uy(:v, Z,UJ) — (Aeikr,gz + Be—ikrﬁz)eikx

Gy. = pi(w) (%)
du

Yy _ Z,uk”l"ﬁ (Aeikrﬂz o Be—ikr,gz) eik’x'

0z

We can write this in matrix form as a state vector:

INLy<Z> eikrﬂz e—ikrﬁz
Gyo(2) | |ipkrge*ss  —ipkrge=itrsz

A
B
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7 Thomson-Haskell Propagator Matrix Method for

Love Wave Dispersion Analysis

Thomson-Haskell propagator matrix method: is a frequency-domain method for plane
waves propagating in a multilayered half-space. A layer-by-layer solution, used for body-wave
propagation and surface-wave dispersion problems [2]. The is the standard and most elegant
approach for multi-layered media. Now, let’s reformulate this problem using propagator

matrices.

The Core Problem and Idea for Love Waves

Problem: Calculate the dispersion and attenuation of Love waves propagating in a stack of

N horizontal, viscoelastic layers over a semi-infinite viscoelastic half-space.

Core Idea (Propagator Matrix): The state of the SH wavefield at any depth z is described
by a State Vector containing the relevant continuous field quantities (displacement and

shear stress). The Layer Propagator Matrix relates the state vector at the top of a layer

to its value at the bottom. By successively propagating the state vector from the half-space
to the free surface and applying the appropriate boundary conditions, the dispersion equation

for the layered medium can be derived.

The Foundation: State Vector and Field Matrix for SH Waves

For SH waves, the motion is purely in the y-direction (transverse to the propagation direction
x and depth z).

The State Vector, f(z), for SH waves is:

Where:

e u,(z): Amplitude of horizontal displacement.

e 0,.(2): Shear stress component.

The general solution within a homogeneous, isotropic layer j is a superposition of upgoing

and downgoing plane waves:
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uéj)(z) — Ajei'/j(zfzjfl) + Bje*iVj(Z*ijl)

A B () A )
o) (2) = gi = iy (Aje™ ) — BiemmiEany)

where:
o ;= k\/W is the vertical wavenumber in layer j (can be real or complex).
e A, is the amplitude of the upgoing wave.
e B; is the amplitude of the downgoing wave.
e 4i; is the complex shear modulus of layer j (incorporating viscoelasticity).
e k =w)/c is the horizontal wavenumber.

We define the Amplitude Vector, a;:

The mathematical link between the state vector and the amplitude vector is given by the
Field Matrix, E;(z):

Explicitly, this is:

A

uy(2) _ ei(z—=zj-1) e~ wi(z—zj-1)
B;

0y2(2)

S, pWi(2—2i1 . e—wWi(2—2i 1
LLiVj€ 5 j—1) 21 5 j—1)

Derivation of the Layer Propagator Matrix for SH Waves

We want to relate the state vector at the top of a layer (2 = 2z, = z;_1) to the state vector at

the bottom (z = 2, = 2;).

1. State at the Bottom: f,,itom = E;(25)a;. We can solve for the amplitude vector:

a; = Ej_l(zb)fbottom
The inverse of the 2x2 field matrix is straightforward to compute:

10



Love Wave in an Isotropic Viscoelastic Media

1 e—il/]'(Z—Zj_l) _ ) e—il/j(z—Zj_l)
E—l(z) —— M]:Vj
J 2 | eilz=zj-1) _i_pivj(z=2j-1)
HjVj

2. State at the Top: fi,, = E;(2)a;.

3. Connect Top to Bottom: Substitute the expression for a;:

ftop = Ej (Zt) [Ej_l(zb)fbottom} = Ej(zt)E;1<Zb) fbottom
—_———
T

We define the Layer Propagator Matrix, T;:

T; = E;(z)E; " (2)

Let’s compute this explicitly. Set the local coordinate so the top of the layer is at 2z’ = 0 and
the bottom is at 2’ = h;. Thus z, =0, 2, = h;.

1 1
E;(0) = | .
UV UGV

E;(h;) = [

eiujhj 677,’1/]']1,]‘

Z'/le/jeiyjhj —iujyje_iyjhj

The product T; = E;(0)E; " (h;) simplifies to (using hyperbolic functions cosh(z) = (" +
e ")/2, sinh(x)=(e*—e")/2):

HiVj

—pyvysin(vih;) - cos(vhy)

T, =

J

cos(v;h;) sin(v;hy) ]

This is the Thomson-Haskell propagator matrix for Love waves!

Physical Meaning of T;: This matrix is a property of the layer. If we know the displace-

ments and stresses at the bottom, we can find them at the top by simply multiplying by T);.
It "propagates” the SH wave solution upwards through the layer.

Building for General N-Layer System

If we have a N number of layers over a half-space (Layer n + 1). The interfaces are at depths

21, %2, 23, 24, - . . Zn. The thickness of layer j is h;.

11
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At each interface, the state vector is continuous (welded contact):

j +1
flgz)gctom = ft(gp )
Using the propagator matrix for each layer:
: . -
ft(gz) = Tj flgz))ttom = Tj ft(gp :

We can chain these relations from the half-space up to the top layer:

f(l)

top

- T,T,Ty... T, £

top

= T1T2f(3) = T1T2T3f(4)

top top

- Tlf(2)

top

Let’s define the Global Propagator Matrix, G:

G=T,T,TsT,T5...T,

So the final relationship is:

fsurface =G fhalfspace—top

Where:

wurface = I, (1) is the state vector at the free surface (z=0).

i top

o fhaitspace-top = ft(:pﬂ) is the state vector at the top of the half-space.

Applying Boundary Conditions and Finding Love Waves

Boundary Condition 1: Free Surface (z=0)

At the free surface, the shear stress is zero.

fsurface = [uy (0 ) ]
0

Boundary Condition 2: Radiation Condition in the Half-Space (z > z,)

In the half-space (Layer n+1), the solution must be purely downgoing and evanescent.

There can be no wave returning from infinity, so the amplitude of the upgoing wave A, ;1 = 0.

The general solution in the half-space is:

12
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1 . . i
u?(;anr )<Z> = (An—i-lewnHZ + Bn+1e WTHAZ) 62 ¢

n+1 o . zZ—z —iv. z2—2z ikx
Uéz )(z) = Uyt 1Vnt1 (AnHe wi(z=2) _ B et ”)) e

Since A, 11 = 0:

uén—i—l) (Z) _ Bn+1 e—iun+1(z—zn)

O_(n—l—l) —in4+1(2—2n)

yz (2) = —ipn+1Vn+1Bntre

Therefore, at the top of the half-space (z = z,), the state vector is:

1
Bn+1

—Ufn41Vn+1

fhalfspace-top = [

We can write this as:

1
fhalfspace—top =V Bn+1, where V = [ ]

—Ufn41Vn+1

Here, V is the boundary matrix for the half-space.

Formulating the Dispersion Equation

Substitute the half-space condition into the global propagation relation:

fsurface =G fhalfspace—top =GV Bn+1

Write this out:

Gll G(12
G21 G22

1 G111 — ipnt1Vn+1Gr2

Gor — i,un+1Vn+1G22

By = By

u, (0)
0

—Ufn41Vn41
This gives us two equations:

1. Uy(o) = (Gn - iﬂn—i—lyn—}—lGlQ)Bn-i-l

2. 0= (Ga1 — itnt1Vn+1G22) Brsa

13
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For a non-trivial solution (B,41 # 0), the second equation must be zero. This is our

Dispersion Equation:

D(w,c) = Gar(w, €) — iftns1(W)Vnt1(w, ) Gaa(w, c) =0

Summary and Numerical Solution for 5 Layers Over a Half-space

To find the Love wave modes for the 5-layer system:

The dispersion equation is given as:

D(w,c) = Gy (w, ¢) —ipg(w)vs(w, ¢) Gaa(w,c) =0

1. For a given frequency w and a trial complex phase velocity ¢, calculate the vertical

wavenumber v; for each of the 5 layers and the half-space.

w C 2
5= 2(G)

(Ensure the branch is chosen so Im(v4) > 0 for decay in the half-space).
2. For each layer j, calculate its propagator matrix T:

HiVj

Tj ==
_ijj Sin(thj) COS(I/jhj

cos(v;h;) sin(v;hy)
)

3. Multiply the matrices to get the global propagator:

G - T1T2T3T4T5

4. Evaluate the dispersion function:

D(W, C) = G — ieVsG22

5. Search for the roots D(w,c) = 0. Each root ¢(w) for which f; < Re(c) < fg is a
valid Love wave mode. The real part of ¢ gives the phase velocity, and the imaginary

part describes the attenuation due to viscoelasticity.

6. Repeat over frequency range to get dispersion curves c(w)

14
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This process systematically applies the Thomson-Haskell method to the 5-layer Love wave

problem, reducing the complex boundary value problem to a robust numerical root-finding

exercise.

Calculating all elements of the global propagator matrix, G

Calculating all elements of the global propagator matrix G is the core computational step.

1. Mathematical Definition

For an N-layer system:

G=T,T,T;T,T5 ... Ty
where each layer matrix is:

in(v:hs
cos(v;h;) sin(v;h;)
T; = H5Vj

—hvysin(vihy) - cos(vihy)

2. Step-by-Step Multiplication

Let’s multiply these matrices step by step. We’ll show both the general pattern and specific

element calculations.

Step 1: Define Layer Matrices Explicitly

(%2
g J

Cj = cos(vhy),  Sj = pyvsin(vshy), 5

For layer j, let:

where:
_ sin(v;hy)

H5V;
Important Identity:
Sj . S; = sinQ(ujhj)

Step 2: Multiply First Two Layers

Let G@ = T,T,.

15
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=-S5 O} —Sy (O

Element-by-element calculation:

G2 =10y — 55,

G =18, + 5.0,

G = —S1Cy — C15s,

G = —5,8, + C,Cs.
Thus:

qo _ [ (02— 5SS CuS;+SiC
—8,Cy — C18y C1Cy — 5,5}

Step 3: Multiply with Third Layer

Let G® = GOT,.
G® G G C3 Sy
\GY 6 \-s ©
21 22 3 3

G =G0 -GS,
G = GiYsy+ G cs,
GS) = G0y — GRS,
Gy = G55+ Gy Ch.

Elements:

Step 4: General Recursive Formula

We can see a pattern! For G®) = G*-1T,:
Gy =G0 - GyYsy,
G =GNVs + GV,
Gy =Gy V0. — Gy S,
Gy = Gy VSi + Gy Gl

Step 5: Complete 5-Layer Calculation

16
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Apply this recursively.
Initialize: G =T,

Layer 2: G® = G)T,

Layer 3: G® = GATy

Layer 4: G = GO®'T,

Layer 5 (Final): G = G® =

G2 =10y — 55,
G = C1Sy+ SiCs,
G = =510y — C15s,
G = —8.8, + C1Cs.

G = Gi)Cs — Gy s,
Gy = GV + G G,
G = GHCy - GRS,
GSy) = G5 Sy + G Cy.

Gl =G - GYs,,

Gy =cP¥s +c¥cy,

G = G5 Cy -GS,

G\ =cP¥s + 6Py
GWT,

G =G — GlYss,
Gia = GiYS; + GV G5,
Gor = GO — GLY S5,
G = Gy S + G Cs.

17
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8 Viscoelastic Model

So far the details of the relaxation function are not defined. Therefore, the objective here

is to find a relaxation function with a frequency-independent Q(w)-value. For the

application in seismic modelling, it is important that the visco-elastic model can describe a
frequency-independent @(w). We can construct viscoelastic models composed of two basic

elements.

Generalized Maxwell-model

Figure 1: Generalized Maxwell Model

In GMB, we add multiple Maxwell models in parallel, which yields the Generalized Maxwell
model or Generalized Maxwell body (GMB), also known as Maxwell-Wiechert model. By the
superposition of multiple Maxwell models with different elastic modules p; and viscosities 7;,

we can achieve a constant Q-value over a given frequency range.

The Hooke element (spring), representing the linear elastic medium

O Hooke = M€

or

I Q

€Hooke =

18
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The Newton element (dashpot), representing the viscous damping part with the stress-

strainrate relation:

O Newton — T]€

or

ENewton — —

where 1 denotes the viscosity of the medium.

Because we assemble the Maxwell SLS model with additional L. Maxwell bodies in parallel,

we have to add the stresses in frequency domain:

L
OGMB = 0SLSM + E O Mazwell,l
1—2

Inserting the stresses

. W\ -
OSLSM — (NO + —> €
wwn +

LW

&Maxwell,l e
iwn +

we have the frequency-domain stress-strain relation for the GMB:

: L .

~ LW Z LW\

(el = + P —— + —) €
MB (HJO win A+

We can move the second term into the sum over the L Maxwell-models:

L )
N LT -
oG = + — )€

MB (Mo ;Wﬁl —l—,ul)

Introducing the relaxation frequencies:

H
Wy ‘= —
m

leads to

19
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w - w \ -
JGMB—(,MO-I—Z +“1>E:<M0+22w+wl)

I want to simplify the complex modulus

L

- imw
heavmB = Mo +

First we estimate the relaxed shear modulus:

IGMB,R = lim figpe = po
w—0

and unrelaxed shear modulus:

o,

AGMBU = hm AeamB = po + Z W

Hi

AGMBU = (}1_)120 faMB = fo + ; -

As w — 00, & — 0, so:

AGMBU = wlgIolo femB = o + Z 1
=1

With the modulus defect or relaxation of modulus

L L
Op = fAGMB.U — flGMB,R = (Mo + Z M) — Mo = Z,uz
=1

=1

For individual mechanisms:

Opy =

since each Maxwell body contributes y; to the total modulus defect.

20
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Normalization with weights q;

Write each branch defect as a fraction of the total defect,

Oy = ar, op

where the weights a; satisfy:

L
Sa=
=1
Since dp; = puy, this gives pu; = ay, dp.
So, each p; express as a fraction of the total modulus defect:

= aiop

Verification:

L L L
S ow=> adp=>6pY a=0dp-1=0ip
=1

=1 =1

which matches our earlier result.

Substitute p; = a;0p into the original expression:

L

~ B i(adp)w
'MGMB(W) = Hot lzz; 1w+ wp
L QW
T = 5 L 9
fierms(W) = po + ,UZZ: o+ o 9)

where po denotes the relaxed shear modulus, 6 the modulus defect, L. the number
of Maxwell bodies, a;,w; weighting coefficients and relaxation frequencies of the I-th
Maxwell body to achieve a constant Q-spectrum, while w is the circular frequency within the

frequency range of the source wavelet.
Final Note:

1. Low-frequency limit: All Maxwell bodies are relaxed — only o remains

2. High-frequency limit: All Maxwell bodies are stiff — each contributes

21
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3. Modulus defect: Difference between high and low frequency limits = > 1

4. Weight normalization: Distribute total defect among mechanisms with weights a,

Relaxation Function Derivation: Transformation of Complex

Modulus to Time Domain

Deriving the Relaxation Function

We need to transform the complex modulus above to time-domain by inverse Fourier transform

leading to the relaxation function.

Given the complex modulus in the frequency domain:

1a W 1aw
g 0+5”Zw+ _MR+6MZM—I—M

We want to transform this to the time domain relaxation modulus G(t).

Relationship between complex modulus and relaxation modulus

In linear viscoelasticity, the complex modulus fi(w) is related to the relaxation modulus W(t)

via:

fiw) = iw F¥ (1)} (w)
where F[U(t)](w) = [;° U(t)e ™!dt is the Fourier transform (for causal ¥(t)).

i(w) = iw /0 T w(t)etar

fi(w) = iw T (w)

This means fi(w) is the Fourier transform of the derivative of ¥(¢), or equivalently:

filw) _ / T wt)e et

W

Thus, ¥(t) is the inverse Fourier transform of ji(w)/(iw).

22
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So to get W(t), we take the inverse Fourier transform:

U(t) ! /00 Mei‘”tdw.

2T w

—00

Rewrite the Complex Modulus

Divide the given expression by iw:

alw) w L a
0 !

=25 E

, ; +ou 2

w W+ wy

Switch to Laplace domain

Using the substitution s = iw (one-sided Fourier transform)

Relaxation modulus W(¢) has Laplace transform ¥(s) with:

(W) =sU(s)|

=

s=iw’

So:

L
= fi(s) _p S
s) = :?O—HSM S+ w

I=1 !

where U(s) is the Laplace transform of W(¢).

Inverse Laplace transform

Taking the inverse Laplace transform term by term:

1
51{—}:L t>0
S
ﬁfl 1 — 67wlt
S+ wy

Final time-domain expression

We know:

Therefore, the relaxation modulus in the time domain is:

23



Love Wave in an Isotropic Viscoelastic Media

L
U(t) = po+6p y_ are™™" (10)

=1

for ¢t > 0.

\I/(t) = {[Lo + 5ﬂzal€_wlt} : H(t) (11)

where H (t) is the Heaviside step function.

This is the stress relaxation function corresponding to the given complex modulus @

Using the definition of the modulus defect as the difference between the unrelaxed pu, and

relaxed shear modulus p:

Op = flu — Mo

we can replace the relaxed by the unrelaxed modulus [1, 3]:

U(t) = {uu — (mlz;‘al (1 — e‘“”’) } - H(t) (12)

So, we are going to use this function in our dispersion numeriacal calculation above.

Transforming the Relaxation Function [12] to Frequency Domain

Given:

U(t) = {uu — (méal (1 — e_“lt) } ~H(t)

where H (t) is the Heaviside step function.

Rewrite:

U(t) = p, H(t) — 5#2@ [1—e "] H(t)
=1
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U(t) = (1) — op S aH () + oS e H(1)

=1

Note: Zlel a; 1s just a constant.

Let A= Zlel aj.
Then:

U(t) = p H(t) — Sp AH(t) +0p Y ae " H(t)

U(t) = [pa — Op Al H(t) +0p Y are " H(1)

=1

Fourier transform

We use the Fourier transform definition:

FUaw) = [ fwe
We know:

1
F{H(t)}(w) = m0(w) + o
(in the sense of distributions; the 1/(iw) is interpreted via the Sokhotski-Plemelj formula,

often written as - + 76(w)).

Also:
Fle ™H(t)} = ! —, a>0
o+ w
Transform of first term
First term: (p1, — opA)H (t)
F (= SnAVH(0} = (1 = 514 |60) + -]

Transform of second term

Second term: o Y r e i H(t)
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Flopae ™ H(t)} =dpa - o iiw
So:
L L
F {5,ulzlale_w’tﬂ(t)} = 5,ulzl o j—liw
Combine
~ Lo
U(w) = (o — OpA) {W{S(w) + i—} +op ; " ;iw

Simplify the constant A

Recall:

L
A= Zal
=1

We can combine the 1/(iw) term with the sum over a;/(w; + iw) if desired, but often in
rheology or viscoelasticity, they keep it as a sum of Debye terms plus a singular term at

w=0.

Let’s check: The iw term coefficient is p, — dpA.

But note: sometimes the model is such that U (¢t — 00) = p, — oA = pg (relaxed modulus),

and ¥(0") = p, (unrelaxed modulus). Indeed, at ¢t = 0%, e7“* =1, so

L
V(0" =y, — (MZal(l —1) = pty.
=1
At t — oo, et — 0, so

L
U(00) = pry — 0 Y ar = pr, — A,
=1

So indeed, pr = p, — IpA.
Thus:
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L

U(w) = pr {ﬂé(w) + i] tony —

wy +w
= Wi T

This is the relaxation function [12|in frequency domain.

Interpret in complex modulus G*(w)

In rheology, the complex modulus G*(w) = iwW(w) for a stress relaxation modulus W(t).

Let’s compute G*(w):

G (w) = iwW(w) = iw F[U()H(t)]

= w

L
1 a;
i (7“““) + z) +op ZH R

The term iw - prmd(w) = impurwd(w) = 0 because wd(w) = 0.

The term iw - £2 = pp.
So:
L .
G*(w) = pgr + (mlzl wjfia;w
This is a standard generalized Maxwell model form:
L two pay
G'(w) = e+ Z wy + iw

=1

with relaxation strengths dua; for mode [.

Relaxation modulus V(t) in frequency domain

V(w) = pg {wa(w) + i} N (mli; a

iw — Wy + 1w

where pip = p, — 0p Zle ay.

In summary, iwV (w) = iw F[¥(t)H(t)] also give the complex modulus which is a Generalized
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Maxwell Model (GMB) in this case.

GMB stress-strain relation

We can then inserting the relaxation function into the viscoelastic stress-strain relation:
t . .
o= / U(t—t"e(t)dt' = U xe
—00

we have to take its first time derivative of W(¢):

U(t) = {uu — 5pgal (1 — e‘wzt) } - H(t)

U(t) = —op lil ae™ - H(t) + {uu — O il a (1 — e—“lt) } o(t)

This is the time derivative of the relaxation function V().

But at t =0, e=“"" =1, (since 0(t) peaks out ¢ = 0) so:

L
pu — 61 (1= 1) = p,.
=1

Thus the given §(t) coefficient simplifies to p,,, matching our result.

Final derivative

U(t) = —op Z awe " H(t) + 11, 0(2)

=1

with o = i, — po-

Insert into stress-strain relation

a(t):/t Ut —t')e(t)) dt’

L t
= pu€(t) — op Z ajw / et —t)e(t) dt!
I=1 -
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Since H(t —t') =1 for t' <'t, we can write:

L t
U(t> - ,Uue(t) — 5# Z ajw / e—wz(t—t’)e(t/> dt’
=1 —00

This is the viscoelastic stress-strain relation for the GMB model.
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