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Elastodynamic Equation

The goal is to derive equation (1) below:

pui=A+2u)V(V-u) — uV x (Vxu) (1)

Starting from the momentum balance and Hooke’s law. We will use index notation (Einstein

summation) where helpful and also show the vector identity used.

Assumptions
e Small strains, linear elasticity (infinitesimal strain tensor).
e Homogeneous, isotropic solid with constant Lamé parameters A, p.
e No body forces.

e u(x,t) is displacement; p density.



Step 1 — Balance of linear momentum (Cauchy)

pi; = 0,0, or in vector form pu=V-o.

Step 2 — Constitutive law (isotropic Hooke’s law)
Strain (infinitesimal):

Ekl = %(8kul + 8luk)

Stress:

Oij = Cijkl €kt = A Oij Epk + 2[0 €4

(Ou; + Oju;), we get

Since ext, = Opui, and ;5 = %

Oij = )\52j (8kuk) + ,u(@iuj + 8JU2) . (2)

Step 3 — Compute 0;0;;
Differentiate (1) with respect to z;:

Gjaij = 0]- ()\ (57,]8kUk) + aj (u(@zuj + @ul)) .

With constant A, p1 (homogeneous medium) and ¢;; constant:

For the second term:

8]- (,u(@zu] + 8]u2)) = ,u((?ﬁzuj + (93(931@2) .



So

Step 4 — Use commutativity of partial derivatives

Since mixed partials commute for smooth fields,

@@uj = 81 (@uj)

Define V - u = 9;u; and Laplacian V?u; = 9;0;u;. Then (3) becomes

Gjazj = A@z(V : u) + u@z(v . U) + ,U/V2u1

901 = (A + ) 0;(V - 1) + pu V:u,.

So the momentum equation is

pii; = (A + ) 0;(V - u) + pu V. (4a)

In vector form:

pi=A\+p)V(V-u)+pVu (4b)

Step 5 — Replace V?u using a vector identity

Use the standard identity

Viu = V(V-u) — Vx(Vxu). (5)




(you may also prove (5) componentwise.)

Substitute (5) into (4b):

pii:(A+u)V(V~u)+u[V(V~u)—VX(qu)].

Collect the V(V - u) terms:

pi=A+2u)V(V-u) — pV x(V xu).

This is the desired equation (1).

piu = A+20)V(V-u) — pVx(Vxu). (1)

Index-notation derivation (compact)

From

puU; = 8]'0@']'

045 = Aéljaklbk —+ /L(azuj + ajuz)

Compute 0;0;; = A0;(Okur) + p0;0;u; + p10;0;uj. Rearranging and using 0;0;u; = 0;(0;u;)

gives

pii; = (A + p)0:(05u;) + pd;0;u;

which is algebraically equivalent to (1) after grouping into V(V - u) and V?u and using the
identity for V?u.



Appendix — component proof of identity (5)

Show (V X (V X U))Z = E)Z(@]u]) — V2UZ‘.

Start with Levi-Civita:

(V X (V X U))l = Eijkaj (eklmalum) = €ijkCkim @j@lum.

Use the epsilon—delta identity

€ijk€kim = 5il5jm - 6im5jla

SO

(V X (V X u))z = (6il5jm — 5z’m5jl> 8j81um = @-@uj — 8j8jui.

But 9;0,u; = 9;(0;u;) = 9;(V - u) and 9;0;u; = V*u;. Hence

(Vx (Vxu));=00(V-u)—Vuy

which rearranges to equation (5).

General Note

e The first term (A + 2u)V(V - u) is the irrotational (dilatational) part — P waves.

e The second term —uV x (V x u) is the solenoidal (shear) part — S waves.



2.0 — Helmholtz Decomposition

The Helmholtz Decomposition states that any sufficiently smooth vector field u can be

decomposed into a curl-free component and a divergence-free component:
u=u,+u,=Vep+VxW¥ (2)

where:
e ¢ is a scalar potential
e U is a vector potential
e u, = V¢ is curl-free (V x u, =0)

e u, =V x W is divergence-free (V - u, = 0)

Decoupling the Wave Equation

We now substitute the decomposition (2) into the simplified wave equation 1.

pu=A+24)V(V-u) — pVx(Vxu) (1)

Left-Hand Side (Time Derivatives)

2

) B , .
pi=pos(Vo+V X W) =pVe+pV x ¥ (3)

Right-Hand Side (Spatial Derivatives)

A+2u)V(V-u) — pV x(V xu)

V-u=V-(Vo+VxW®)=V-(Vo)+V-(VxW¥)=V¥p+0 (4)
Vxu=Vx(Vo+Vx¥)=Vx(Vp)+Vx(VxP¥)=0+Vx(VxT) (5



Substituting (4) and (5) into the right-hand side of equation 1:

RHS = (A +2u)V(V?¢) — uV x [V x (V x ©)]
= (A +2u)V(V?¢) — uV x [V(V - &) — V¥ (6)

We can choose the Coulomb gauge (V - ¥ = 0), which simplifies (6) to:

RHS = (\ + 2u)V(V?¢) + uV x (V?¥) (7)

The Final Decoupled Form

Equating the left-hand side (3) with the right-hand side (7):

V(A 20026 = pd| + 7 x [u92® — pib| =0 (8)

For this sum of a gradient and a curl to be zero everywhere, the terms inside the brackets

must each be zero (or at most equal to a constant, which can be ignored for wave solutions):

V(A 20026 - pd| =0 (9)
V x [MV2\II - ,o\'I':] —0 (10)

This leads to two independent, decoupled wave equations.

Final Wave Equations and Speeds

From (9) and (10), we obtain:

P-Wave Equation (Compressional)

A+ 2p
p

(11)

1 .
— ¢ = V%p, where o=
o

e « is the P-wave speed.
e Derived from the scalar potential ¢.

e Particle motion is parallel to the direction of propagation (u, = V¢).



S-Wave Equation (Shear)

%\'I'l =V?W¥, where (= \/% (12)

e [ is the S-wave speed.

e Derived from the vector potential W.

e Particle motion is perpendicular to the direction of propagation (u; =V x ¥).

Summary

The Helmholtz decomposition successfully decouples the elastic wave equation into two in-

dependent wave types:
e P-waves (faster, o > /3, compressional) governed by the scalar potential ¢.
e S-waves (slower, shear) governed by the vector potential W.

This derivation elegantly explains the fundamental separation of body waves observed in

seismology.

3.0 —- Homogeneous Media Solution (Plane vs Spherical Waves)

Plane Wave Solutions and Polarization

We start from the homogeneous isotropic elastodynamic equation (already established above):

pi = A+20)V(V-u) — pVx(Vxu). (1)

We seek harmonic plane-wave solutions to the elastodynamic equation.

Step 1 — Plane-wave ansatz

Assume

U(X, t) — Aei(k’mq + koxo + k3xs — wt) — Aei(kx—wt)



where k is the wavevector, w angular frequency, and A (constant) amplitude / polarization

vector.

For this ansatz the differential operators act as:

Visik, O —iw, Ve -k

So compute the pieces needed:

Vou—i(k-A)elexen
V(V-u)=—k(k-A)e0
Vxu=rikxA)el
V x (Vxu)=—-kx (kxA)el

= —w?A e'0)

(Note that e'() is short for e?(k*=wt) )

Step 2 - Substitute into equation (1) and cancel the common expo-

nential factor

Substitute all terms into (1). After cancelling the common factor ') we get

p(—w)A = A +2u)[—k(k-A)] — p[-kx (kxA)].

Simplify signs:

—pw?A = —(A+2u)k(k-A) + pkx (k x A).

Multiply both sides by —1:

p?A = A+2)k(k-A) — pk x (k x A). (6)



Step 3 - Use the vector triple-product identity

Use
kx(kxA)=kk-A)-— |k\2A.

Plugging this into (6):

pw’A = (A+2u) k(k-A) — plk(k- A) — |k[*A]
= (A+2u—p)k(k- A) + plk*A

= (A + 1) k(k- A) + p|k?A.

Rearrange:

(o — uk)A = A+ pk(k-A). (7)

Equation (7) is an algebraic eigenvalue-type equation for A.
Step 4 - Dot equation (7) with k to find a scalar relation
Take the dot product of (7) with k:

(pw? — plk[?) (k- A) = (A +p) [k (k- A).

Move all terms to one side:

(1 — (A -+ 22) k) (k- A) =0 ®)

Thus either
e k- A =0 (transverse polarization), or
e k- A # 0 (longitudinal polarization)

e pw? = (X +2u)|k|* (longitudinal branch).

We now have two possibilities.
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Case A — Longitudinal (P) wave: k- A # 0

If k- A # 0, equation (8) forces

0
2 A+ 2u)k]?) =
(p? = (A +2) [K[?) A
g = (A + 200
Hence
A+2
W=ty |2 g
p
Define the compressional (P) speed
A+2
a = +en , w = t+alk|
p

Now, let’s show that A must be parallel to k.

Using equation (7):

(? — k) A = (A4 ) k(k - A).

Remember:

pu? = (0 + 20) [k[?

((+20) K2 = ulk[?) A = (A+ ) k(k- A)

(MK + 20 [k? = [K[2) A = (A+ ) k(k - A)
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A+ kA = (A+p)k(k-A)

Thus equation (7) becomes

A+ kA = A+ ) k(k- A)

Cancel (X + i) (nonzero for ordinary solids) and divide by |k|*:

k(k-A)
A=——-
k|2
This means A equals its projection onto k — i.e. A is parallel to k. Thus P-wave

polarization is longitudinal (particle motion parallel to propagation).

Case B — Transverse (S) wave: k- A =0

If k- A =0, equation (7) reduces to

(pw* — pulk[*) A = 0.

Non-trivial A requires

pw® = plk|?,

SO

w::l:\/E|k|.
0

Define the shear (S) speed

g = \/E T
P

Because k - A = 0, the polarization A is perpendicular to k (transverse). There are two
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independent orthogonal polarizations (S is twofold degenerate).

Compact matrix/eigenvalue viewpoint (short form)

Rewrite (7) dividing by |k]|?:

w? k
— n=—.

(p)A =pA+ (A +p)a(m-A), with & = ek K

A A

This is an eigenproblem for the 3 x 3 matrix ul + (A + p)nnt. Its eigenvalues are:
e pc? = X+ 2u for eigenvector 7 (longitudinal),

e pc? = u (double) for any vector orthogonal to 7 (two shear polarizations).

Final Notes

e P (compressional / longitudinal) waves: w = +alk|, a = @/’\+—p2“, A || k.
e S (shear / transverse) waves: w = +5lk|, § = \/g, A 1k

Both are nondispersive (phase speed = group speed) in a homogeneous linear elastic medium.

That is, same wave velocity in all direction (Isotropy). S-waves are absent if g = 0 (fluids).

Spherical Wave Solutions

Physical Context and Wave Equation

In this case we are dealing with waves radiating outward from a point source in a homoge-
neous medium. The governing equation is the standard scalar wave equation derived for the

P-wave potential ¢:

1 .
2 ¢ =V?¢
Where:

e « is the wave speed (e.g., P-wave speed)

e V2 is the Laplacian operator

13



e ¢ is the wave field (e.g., velocity potential)

The key point is that the form of the Laplacian V? depends on the coordinate system,

which in turn dictates the nature of the solution.

In spherical coordinates (for spherically symmetric waves):

o, L O [ ,00
Tion L2 (#22)

r2 Or

Part 1: First Attempt - Why Simple Plane Wave Fails

Try:
¢(T, t) _ Aei(wt—kr)

Calculate first derivative:

% = —ik A = —ike(r,t)
Calculate second part:
7“2% = —ikr?p(r,t)
Apply outer derivative:
% (7’2%) = %(—ikr%(r, t))

Using product rule:

or
— —ik [2r(r, t) + r(—ike(r, )]
= —2ikro(r,t) — k*r’¢(r, t)

= —ik {zrgb(r, t) + TQM}

Therefore: . 0
V26 = — [<2ikré — K*r’g] = == — k%0
r r

What we need for the wave equation:

V3¢ = —k*¢ (where k = w/a)
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There’s a Problem!, because we have an extra term!

Vo= k6~ 2

5
Vip=— <k2 — Lk) #| WRONG!

r

The extra term —2ik/r means this is NOT a solution. You should note that Amplitude A
in the plane wave assumption above does not vary with radial distance r from the source

(spherical symmetry).

Part 2: Physical Insight - Why Amplitude Must Decay

Energy conservation argument:
1. Energy flows outward through spherical surfaces
2. Energy density oc |¢|?
3. Surface area of sphere = 47r?
4. Total energy through sphere must be constant
Therefore:

|p|* x 47r* = constant

This means: )
P ox =
r

The amplitude must decay as 1/r! Practically speaking, It also make sense that A
should decay with 7.

Part 3: Correct Solution with Amplitude Decay - The Exact 3D
Spherical Wave Solution

Assuming:
B(r,t) = A(r)el@t=Fn)

where A(r) is a function of r to be determined.
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Find first derivative:

o i(w r) A i(wt—kr)
or  dr ¢ tkde
[9J0) dA ,
27— | kA i(wt—kr)
or {d’r ik } ¢

Multiply by r2

Take derivative again (product rule)

2 (7”2%) _ ei(wt—kr)x

or
{zr% + rzcc% — 2ikrA — ier% + (—ik) (ﬂ% - ik:rZA)]
Simplifying:
= gilwi=kr) {ﬁ% + 27“% — zz'kr?(fi;j — 2ikrA — erQA]

Divide by r? to get V¢

10 0o A d*’A  2dA L dA  2ik
20 277 i(wt—kr) [ £ 22 9 ———A—/{IQA
Ve (T 87") ‘ {drz +7"dr der r

Wave equation requires that:

2

v2¢ _ —%QS _ _k2Aei(wt—kr)

Equating both sides
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2 .
£ 2Ry dA_ By oy gy

dr? + r dr dr r

The k?A terms cancel:

A 2dA dA 2k
—_— - —2tk— = —A
dr? + r dr ! dr r

This is a form of Cauchy-Euler equation.
Now, we must solve equation (A) to find A(r)
Rearrange the equation

— - —2tk)| —=—A
dr2+ r ! dr r

d’A (2 )dA 2k

Since we have both real and imaginary terms in (A), let’s look at the imaginary part only.

The imaginary terms are:

—2@‘1{:% = %A
dr r
Divide both sides by —2ik:
dA _A
dr 7

Solve the differential equation. This is a separable first-order ODE:

dA__dr
A r

Integrate both sides of the differential equation

[
A r
In|Al=—In|r|+ C)
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In|A| =1In

1
o

-
Exponentiate

A= eln(l/r)—i-Cl _ 601 i 1
r

Let O = e©1:

A(r) = g

Let’s verify whether this satisfies the real part

With A = C/r:
dA C
* — = ——

dr r2
?A 20
o —— = —
dr? 73

Substitute into the original equation (A):

20 2 C . C 2ik [ C
— F = =2k = | =— | —
r3 r r2 72 r r

2020 2ikC _ 2ikC

P g 2 v
The equation is satisfied!
So, the final answer is:
C
Alr) = —
(="
Taking C' = 1 gives us:
1
Alr) = -
(=

This is the geometrical spreading factor for spherical waves in 3D. The amplitude of the

wave decays inversely with distance r because the wave’s energy is being distributed over
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an ever-increasing spherical surface area (47r?). This is a fundamental property of waves in

3D. The waveform remains unchanged (dispersionless) during propagation.

Testing for V2¢

Let’s verify this satisfies the wave equation. Assume A(r) = C'/r. Then:

First derivative:

% _ _gei(wt—kr) . ikgei(Wt_kr) —_C i + ﬁ ei(wt—kr)
or r2 r rz2

Now compute the key term for the Laplacian:

0o
2 1 i(wt—kr)
= —C(1+ikr)e

8(25 . t(wt—kr) 2, i(wt—kr)
o ( 8r> —C(ik) (ikr)e'l = Ck*re

Therefore, the Laplacian is:

VQ(b _ a ( aé) 1 (CkZ i(wt— kr)) _ C_kzei(wtfkr)

or r2 r

2
v2¢ _ C_kei(wt—k:r) — ]{52 gei(wt—kr) — ]{'2¢
T r

The time derivative is:

. P C C
— ()2 pilwt=kr) _ 2~ i(wt—kr)
o= e = (iw) e wi e
Plugging into the wave equation:
1 -
6=
o
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o? r r

1 (ONy Ck?* |
<_w2_€1(wtkr)> — 6z(wt7kr)

Canceling common terms, we get the dispersion relation:

w? w?

——221{32 or /{?2:—2
(0% (0%

This confirms that £ is constant, and our solution is valid. It is for this reason that solution

in Part 1 above is wrong because k£ has an extra term which is imaginary.

Final Solution

The exact 3D spherical wave solution is:

rt) = A(r ei(wt—kr) _ lei(wt—kr)
(7,
r

Key Summary:

e v Geometrical spreading: amplitude decreases as 1/r

wt—kr)

e v Phase propagation: el travels at speed «

2

e v Energy conservation: |¢|? x r? = constant

e Vv Singularity at origin: ¢ — oo as r — 0 (point source)

Part 4: The Asymptotic 2D “Spherical” (Cylindrical) Wave Solution

In many applications (e.g., a long line source), waves spread out cylindrically in a 2D plane.

The Laplacian for cylindrical coordinates with radial symmetry is:

2,10 ( 09
v gb_r@r (Tar)

By analogy with the 3D case above, one might try a solution with a 1//r amplitude decay,

as the perimeter of a circle is 277, suggesting intensity decays as 1/r, and thus amplitude as

1/\/F.
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1 .
¢(T’, t) — _ez(wtfk:r)

NG
Now, we will substitute this trial solution into the scalar wave equation to see if it works.

Computing the Derivatives

First, compute the spatial derivatives:

0¢ 1 39 a1 . 1 ‘ 1 .
v = — ik /2 (wt—kr) _ [ — El — i(wt—kr)
or ( 2" v ¢ o ! \/Fe

Now compute r%:

) 1 1.
— _ | = ke i(wt—kr)
rar (2 +1 r) —\/Fe

Now compute the Laplacian term:

g % — 2 _ 1 ; —1/2 ji(wt—kr)
or (TGT)_E)T [ (2+2k7")7” c

Let f(r) = — (% + ikr) ei(wt—kr)

Using the product rule:
1 1 .
fir)=— [(ik)rl/Q + (5 - ik:r) <—§r3/2 — ikr1/2)] e/(t=hr)

Let’s compute this carefully:
e Derivative of first part: d%[% +ikr] =ik
e So first term: —(il{;)r%l el(wt—kr)
e Second term: — (% + z'k;r) X di[r*1/2 ei(wtfkr)]

T

° di?q[r—l/Q ei(wt—k’r)] — (—%T_S/Q _ Z’k,,,,—l/?) ei(wt—kr)

Putting it all together:

; 1 1 ,
f'(r)= ik 2R <§ + ikr) (—57“3/2 — z’krl/Z) lwi=hr)
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Multiply out the second term:

(% + ikr) (—%7’_3/2 - ik:r_l/2) = —ir“gm — %7’_1/2 - %T_I/Q + k22

= —lr’?’/Q — ikr™ Y2 4 212

So:
f/(r) Y2k _ <_;1T—3/2 kY2 4 k2rl/2> pilwt—kr)
_ (_Z'kr—l/Q + ir—3/2 +7:ka_1/2 i k27’1/2) ei(wt—kr)
_ 1 —3/2 k?2 1/2 6i(wt—k7")
4
Therefore:

¢ Lo Zam 12 172\ i(wt—kr)
I < 87’) (Zr — k*r e
Now the full Laplacian:

V2¢ = 1 8 ( g¢) 1 <}L7~—3/2 _ k:2r1/2) eilwt—kr)
T T

1 RN .
Vi = <—4r5/2 — m) e!@t=k)(Laplacian)

2 2 zw kr 2

Now compute the time derivative:

.92 1 .
b= 6 _ —w?—=€'@=F) | (Time Derivative)

Bi2 Jr

Substituting into the Wave Equation

6=
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1 1 . 1 k2 .
— _w2 _ez(wtfkr) _ v ez(wtfkr)
Q N 4r5/2  pl/2

—w? 1 .
W ez(wtfkr) — 1 . kQ
a? \r 42

Multiply both sides by /re”#«=*r);

ei(wtfkr)

5 -

w? 1 9
a?  4r2
Rearranging:
2 w2+1 (Di ion Relation)
= 4+ — ispersion Relation
o 4r? P

This is the key result that shows why the trial solution above fails as an exact solution. k?

should be equal to z—i

Physical Interpretation and Asymptotic Solution

The dispersion relation k? = g—z + ﬁ tells us:

1. The wavenumber ik depends on distance r - this is unusual and problematic
2. The wave is dispersive - different frequency components travel at different speeds
3. The waveform changes shape as it propagates

However, in the far field (r > )), the term ﬁ becomes negligible compared to g—z because:
o k=2 s0 ;’—z = k2 where kg is the constant wavenumber
e When r > 10X, ;5 < kg

Therefore, in the far field:

w
FPr— = kx—=k
(0% (0]

Thus, in the far field, our trial solution becomes approximately valid:

1 .
olr,1) 2 etk

More generally, for any waveform:



1

o(r,t) ~ NG

(wt — kr)

works well!

So, the trial solution above is an asymptotic solution of the wave equation in the far field

in the 2D spherical coordinate.

The 1/4/r amplitude decay represents cylindrical geometrical spreading - the wave en-

ergy spreads over cylinders with perimeter proportional to r, so intensity decays as 1/r, and

amplitude as 1/4/r.

This derivation shows why 2D wave propagation is fundamentally more complex than 3D

propagation, requiring the far-field approximation for simple solutions.

Summary of Part 4

Aspect Mathematical Expres- | Physical Meaning
sion

Exact Relation k? = g—z + ﬁ Wavenumber depends on posi-
tion

Far Field Condition r> A\ Distance much greater than
wavelength

Asymptotic Relation k? ~ ;’—z Constant wavenumber recovered

Asymptotic Solution o(r,t) = == f(wt — kor) Wave with cylindrical spreading

Note: The exact 2D solution involves Hankel functions, but 1/4/r is excellent for r > \.

General Summary

Dimension | Spreading Factor | Exact Solution? Physical Meaning
3D 1/r V' Yes Energy over sphere area o< r?
2D 1/\/r v Only asymptotic Energy over circle o< r
1D 1 (no decay) v Yes Plane wave, no spreading

24




Wave Type Mathematical Form Intensity | Distance Dependence
Plane (1D) Agilwt=kz) |A|? No decay
Cylindrical (2D) iei(wt—kr) (asymptotic, not exact) % I x 1
NG ’ 3 .
Spherical (3D) éei(“’t_’“") @ I x lz
r r r
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