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Elastodynamic Equation

The goal is to derive equation (1) below:

ρü = (λ+ 2µ)∇(∇ · u) − µ∇× (∇× u) (1)

Starting from the momentum balance and Hooke’s law. We will use index notation (Einstein

summation) where helpful and also show the vector identity used.

Assumptions

• Small strains, linear elasticity (infinitesimal strain tensor).

• Homogeneous, isotropic solid with constant Lamé parameters λ, µ.

• No body forces.

• u(x, t) is displacement; ρ density.
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Step 1 — Balance of linear momentum (Cauchy)

ρ üi = ∂jσij, or in vector form ρ ü = ∇ · σ.

Step 2 — Constitutive law (isotropic Hooke’s law)

Strain (infinitesimal):

εkl =
1
2
(∂kul + ∂luk).

Stress:

σij = cijkl εkl = λ δij εkk + 2µ εij.

Since εkk = ∂kuk and εij =
1
2
(∂iuj + ∂jui), we get

σij = λ δij (∂kuk) + µ(∂iuj + ∂jui) . (2)

Step 3 — Compute ∂jσij

Differentiate (1) with respect to xj:

∂jσij = ∂j
(
λ δij∂kuk

)
+ ∂j

(
µ(∂iuj + ∂jui)

)
.

With constant λ, µ (homogeneous medium) and δij constant:

∂j
(
λ δij∂kuk

)
= λ ∂i(∂kuk).

For the second term:

∂j
(
µ(∂iuj + ∂jui)

)
= µ

(
∂j∂iuj + ∂j∂jui

)
.
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So

∂jσij = λ ∂i(∂kuk) + µ ∂j∂iuj + µ ∂j∂jui . (3)

Step 4 — Use commutativity of partial derivatives

Since mixed partials commute for smooth fields,

∂j∂iuj = ∂i(∂juj).

Define ∇ · u = ∂juj and Laplacian ∇2ui = ∂j∂jui. Then (3) becomes

∂jσij = λ ∂i(∇ · u) + µ ∂i(∇ · u) + µ∇2ui

∂jσij = (λ+ µ) ∂i(∇ · u) + µ∇2ui.

So the momentum equation is

ρ üi = (λ+ µ) ∂i(∇ · u) + µ∇2ui. (4a)

In vector form:

ρ ü = (λ+ µ)∇(∇ · u) + µ∇2u (4b)

Step 5 — Replace ∇2u using a vector identity

Use the standard identity

∇2u = ∇(∇ · u) − ∇× (∇× u) . (5)
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(you may also prove (5) componentwise.)

Substitute (5) into (4b):

ρ ü = (λ+ µ)∇(∇ · u) + µ
[
∇(∇ · u)−∇× (∇× u)

]
.

Collect the ∇(∇ · u) terms:

ρ ü = (λ+ 2µ)∇(∇ · u) − µ∇× (∇× u).

This is the desired equation (1).

ρ ü = (λ+ 2µ)∇(∇ · u) − µ∇× (∇× u) . (1)

Index-notation derivation (compact)

From

ρüi = ∂jσij

σij = λδij∂kuk + µ(∂iuj + ∂jui)

Compute ∂jσij = λ∂i(∂kuk) + µ∂j∂jui + µ∂j∂iuj. Rearranging and using ∂j∂iuj = ∂i(∂juj)

gives

ρüi = (λ+ µ)∂i(∂juj) + µ∂j∂jui

which is algebraically equivalent to (1) after grouping into ∇(∇ · u) and ∇2u and using the

identity for ∇2u.
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Appendix — component proof of identity (5)

Show (∇× (∇× u))i = ∂i(∂juj)−∇2ui.

Start with Levi–Civita:

(∇× (∇× u))i = ϵijk∂j
(
ϵklm∂lum

)
= ϵijkϵklm ∂j∂lum.

Use the epsilon–delta identity

ϵijkϵklm = δilδjm − δimδjl,

so

(∇× (∇× u))i = (δilδjm − δimδjl) ∂j∂lum = ∂j∂iuj − ∂j∂jui.

But ∂j∂iuj = ∂i(∂juj) = ∂i(∇ · u) and ∂j∂jui = ∇2ui. Hence

(∇× (∇× u))i = ∂i(∇ · u)−∇2ui

which rearranges to equation (5).

General Note

• The first term (λ+ 2µ)∇(∇ · u) is the irrotational (dilatational) part → P waves.

• The second term −µ∇× (∇× u) is the solenoidal (shear) part → S waves.
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2.0 – Helmholtz Decomposition

The Helmholtz Decomposition states that any sufficiently smooth vector field u can be

decomposed into a curl-free component and a divergence-free component:

u = up + us = ∇ϕ+∇×Ψ (2)

where:

• ϕ is a scalar potential

• Ψ is a vector potential

• up = ∇ϕ is curl-free (∇× up = 0)

• us = ∇×Ψ is divergence-free (∇ · us = 0)

Decoupling the Wave Equation

We now substitute the decomposition (2) into the simplified wave equation 1.

ρü = (λ+ 2µ)∇(∇ · u) − µ∇× (∇× u) (1)

Left-Hand Side (Time Derivatives)

ρü = ρ
∂2

∂t2
(∇ϕ+∇×Ψ) = ρ∇ϕ̈+ ρ∇× Ψ̈ (3)

Right-Hand Side (Spatial Derivatives)

(λ+ 2µ)∇(∇ · u) − µ∇× (∇× u)

∇ · u = ∇ · (∇ϕ+∇×Ψ) = ∇ · (∇ϕ) +∇ · (∇×Ψ) = ∇2ϕ+ 0 (4)

∇× u = ∇× (∇ϕ+∇×Ψ) = ∇× (∇ϕ) +∇× (∇×Ψ) = 0 +∇× (∇×Ψ) (5)
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Substituting (4) and (5) into the right-hand side of equation 1:

RHS = (λ+ 2µ)∇(∇2ϕ)− µ∇× [∇× (∇×Ψ)]

= (λ+ 2µ)∇(∇2ϕ)− µ∇× [∇(∇ ·Ψ)−∇2Ψ] (6)

We can choose the Coulomb gauge (∇ ·Ψ = 0), which simplifies (6) to:

RHS = (λ+ 2µ)∇(∇2ϕ) + µ∇× (∇2Ψ) (7)

The Final Decoupled Form

Equating the left-hand side (3) with the right-hand side (7):

∇
[
(λ+ 2µ)∇2ϕ− ρϕ̈

]
+∇×

[
µ∇2Ψ− ρΨ̈

]
= 0 (8)

For this sum of a gradient and a curl to be zero everywhere, the terms inside the brackets

must each be zero (or at most equal to a constant, which can be ignored for wave solutions):

∇
[
(λ+ 2µ)∇2ϕ− ρϕ̈

]
= 0 (9)

∇×
[
µ∇2Ψ− ρΨ̈

]
= 0 (10)

This leads to two independent, decoupled wave equations.

Final Wave Equations and Speeds

From (9) and (10), we obtain:

P-Wave Equation (Compressional)

1

α2
ϕ̈ = ∇2ϕ, where α =

√
λ+ 2µ

ρ
(11)

• α is the P-wave speed.

• Derived from the scalar potential ϕ.

• Particle motion is parallel to the direction of propagation (up = ∇ϕ).
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S-Wave Equation (Shear)

1

β2
Ψ̈ = ∇2Ψ, where β =

√
µ

ρ
(12)

• β is the S-wave speed.

• Derived from the vector potential Ψ.

• Particle motion is perpendicular to the direction of propagation (us = ∇×Ψ).

Summary

The Helmholtz decomposition successfully decouples the elastic wave equation into two in-

dependent wave types:

• P-waves (faster, α > β, compressional) governed by the scalar potential ϕ.

• S-waves (slower, shear) governed by the vector potential Ψ.

This derivation elegantly explains the fundamental separation of body waves observed in

seismology.

3.0 – Homogeneous Media Solution (Plane vs Spherical Waves)

Plane Wave Solutions and Polarization

We start from the homogeneous isotropic elastodynamic equation (already established above):

ρ ü = (λ+ 2µ)∇(∇ · u) − µ∇× (∇× u) . (1)

We seek harmonic plane-wave solutions to the elastodynamic equation.

Step 1 — Plane-wave ansatz

Assume

u(x, t) = A ei(k1x1 + k2x2 + k3x3 −ωt) = A ei(k·x−ωt)
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where k is the wavevector, ω angular frequency, and A (constant) amplitude / polarization

vector.

For this ansatz the differential operators act as:

∇ 7→ ik, ∂t 7→ −iω, ∇2 7→ −|k|2.

So compute the pieces needed:

∇ · u = i(k ·A) ei(k·x−ωt)

∇(∇ · u) = −k(k ·A) ei(·)

∇× u = i(k×A) ei(·)

∇× (∇× u) = −k× (k×A) ei(·)

ü = −ω2A ei(·)

(Note that ei(·) is short for ei(k·x−ωt).)

Step 2 - Substitute into equation (1) and cancel the common expo-

nential factor

Substitute all terms into (1). After cancelling the common factor ei(·) we get

ρ(−ω2)A = (λ+ 2µ)
[
− k(k ·A)

]
− µ

[
− k× (k×A)

]
.

Simplify signs:

− ρω2A = −(λ+ 2µ)k(k ·A) + µk× (k×A).

Multiply both sides by −1:

ρω2A = (λ+ 2µ)k(k ·A) − µk× (k×A). (6)
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Step 3 - Use the vector triple-product identity

Use

k× (k×A) = k(k ·A)− |k|2A.

Plugging this into (6):

ρω2A = (λ+ 2µ)k(k ·A)− µ
[
k(k ·A)− |k|2A

]
= (λ+ 2µ− µ)k(k ·A) + µ|k|2A

= (λ+ µ)k(k ·A) + µ|k|2A.

Rearrange:

(ρω2 − µ|k|2)A = (λ+ µ)k(k ·A). (7)

Equation (7) is an algebraic eigenvalue-type equation for A.

Step 4 - Dot equation (7) with k to find a scalar relation

Take the dot product of (7) with k:

(ρω2 − µ|k|2) (k ·A) = (λ+ µ) |k|2(k ·A).

Move all terms to one side:

(
ρω2 − (λ+ 2µ)|k|2

)
(k ·A) = 0 (8)

Thus either

• k ·A = 0 (transverse polarization), or

• k ·A ̸= 0 (longitudinal polarization)

• ρω2 = (λ+ 2µ)|k|2 (longitudinal branch).

We now have two possibilities.
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Case A — Longitudinal (P) wave: k ·A ̸= 0

If k ·A ̸= 0, equation (8) forces

(
ρω2 − (λ+ 2µ)|k|2

)
=

0

(k ·A)
(9)

ρω2 = (λ+ 2µ) |k|2

Hence

ω = ±

√
λ+ 2µ

ρ
|k|

Define the compressional (P) speed

α =

√
λ+ 2µ

ρ
, ω = ±α|k|

Now, let’s show that A must be parallel to k.

Using equation (7):

(ρω2 − µ|k|2)A = (λ+ µ)k(k ·A).

Remember:

ρω2 = (λ+ 2µ) |k|2

(
(λ+ 2µ) |k|2 − µ|k|2

)
A = (λ+ µ)k(k ·A)

(
λ |k|2 + 2µ |k|2 − µ |k|2

)
A = (λ+ µ)k(k ·A)

11



(λ+ µ) |k|2A = (λ+ µ)k(k ·A)

Thus equation (7) becomes

(λ+ µ)|k|2A = (λ+ µ)k(k ·A)

Cancel (λ+ µ) (nonzero for ordinary solids) and divide by |k|2:

A =
k(k ·A)

|k|2
.

This means A equals its projection onto k — i.e. A is parallel to k. Thus P-wave

polarization is longitudinal (particle motion parallel to propagation).

Case B — Transverse (S) wave: k ·A = 0

If k ·A = 0, equation (7) reduces to

(ρω2 − µ|k|2)A = 0.

Non-trivial A requires

ρω2 = µ|k|2,

so

ω = ±
√

µ

ρ
|k|.

Define the shear (S) speed

β =

√
µ

ρ
, ω = ±β|k|

Because k ·A = 0, the polarization A is perpendicular to k (transverse). There are two
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independent orthogonal polarizations (S is twofold degenerate).

Compact matrix/eigenvalue viewpoint (short form)

Rewrite (7) dividing by |k|2:

(
ρc2

)
A = µA+ (λ+ µ) n̂(n̂ ·A), with c2 =

ω2

|k|2
, n̂ =

k

|k|
.

This is an eigenproblem for the 3× 3 matrix µI + (λ+ µ)n̂n̂T . Its eigenvalues are:

• ρc2 = λ+ 2µ for eigenvector n̂ (longitudinal),

• ρc2 = µ (double) for any vector orthogonal to n̂ (two shear polarizations).

Final Notes

• P (compressional / longitudinal) waves: ω = ±α|k|, α =
√

λ+2µ
ρ

, A ∥ k.

• S (shear / transverse) waves: ω = ±β|k|, β =
√

µ
ρ
, A ⊥ k.

Both are nondispersive (phase speed = group speed) in a homogeneous linear elastic medium.

That is, same wave velocity in all direction (Isotropy). S-waves are absent if µ = 0 (fluids).

Spherical Wave Solutions

Physical Context and Wave Equation

In this case we are dealing with waves radiating outward from a point source in a homoge-

neous medium. The governing equation is the standard scalar wave equation derived for the

P-wave potential ϕ:

1

α2
ϕ̈ = ∇2ϕ

Where:

• α is the wave speed (e.g., P-wave speed)

• ∇2 is the Laplacian operator
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• ϕ is the wave field (e.g., velocity potential)

The key point is that the form of the Laplacian ∇2 depends on the coordinate system,

which in turn dictates the nature of the solution.

In spherical coordinates (for spherically symmetric waves):

∇2ϕ =
1

r2
∂

∂r

(
r2
∂ϕ

∂r

)

Part 1: First Attempt - Why Simple Plane Wave Fails

Try:

ϕ(r, t) = Aei(ωt−kr)

Calculate first derivative:

∂ϕ

∂r
= −ikA ei(ωt−kr) = −ikϕ(r, t)

Calculate second part:

r2
∂ϕ

∂r
= −ikr2ϕ(r, t)

Apply outer derivative:
∂

∂r

(
r2
∂ϕ

∂r

)
=

∂

∂r
(−ikr2ϕ(r, t))

Using product rule:

= −ik

[
2rϕ(r, t) + r2

∂ϕ(r, t)

∂r

]
= −ik

[
2rϕ(r, t) + r2(−ikϕ(r, t))

]
= −2ikrϕ(r, t)− k2r2ϕ(r, t)

Therefore:

∇2ϕ =
1

r2
[
−2ikrϕ− k2r2ϕ

]
= −2ik

r
ϕ− k2ϕ

What we need for the wave equation:

∇2ϕ = −k2ϕ (where k = ω/α)
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There’s a Problem!, because we have an extra term!

∇2ϕ = −k2ϕ− 2ik

r
ϕ

∇2ϕ = −
(
k2 − 2ik

r

)
ϕ WRONG!

The extra term −2ik/r means this is NOT a solution. You should note that Amplitude A

in the plane wave assumption above does not vary with radial distance r from the source

(spherical symmetry).

Part 2: Physical Insight - Why Amplitude Must Decay

Energy conservation argument:

1. Energy flows outward through spherical surfaces

2. Energy density ∝ |ϕ|2

3. Surface area of sphere = 4πr2

4. Total energy through sphere must be constant

Therefore:

|ϕ|2 × 4πr2 = constant

This means:

|ϕ| ∝ 1

r

The amplitude must decay as 1/r! Practically speaking, It also make sense that A

should decay with r.

Part 3: Correct Solution with Amplitude Decay - The Exact 3D

Spherical Wave Solution

Assuming:

ϕ(r, t) = A(r)ei(ωt−kr)

where A(r) is a function of r to be determined.
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Find first derivative:

∂ϕ

∂r
=

dA

dr
ei(ωt−kr) − ikA ei(ωt−kr)

∂ϕ

∂r
=

[
dA

dr
− ikA

]
ei(ωt−kr)

Multiply by r2

r2
∂ϕ

∂r
= r2

[
dA

dr
− ikA

]
ei(ωt−kr)

r2
∂ϕ

∂r
= r2

dA

dr
ei(ωt−kr) − ikA r2ei(ωt−kr)

Take derivative again (product rule)

∂

∂r

(
r2
∂ϕ

∂r

)
= ei(ωt−kr)×[
2r

dA

dr
+ r2

d2A

dr2
− 2ikrA− ikr2

dA

dr
+ (−ik)

(
r2
dA

dr
− ikr2A

)]

Simplifying:

= ei(ωt−kr)

[
r2
d2A

dr2
+ 2r

dA

dr
− 2ikr2

dA

dr
− 2ikrA− k2r2A

]
Divide by r2 to get ∇2ϕ

∇2ϕ =
1

r2
∂

∂r

(
r2
∂ϕ

∂r

)
= ei(ωt−kr)

[
d2A

dr2
+

2

r

dA

dr
− 2ik

dA

dr
− 2ik

r
A− k2A

]
Wave equation requires that:

∇2ϕ = −ω2

α2
ϕ = −k2Aei(ωt−kr)

Equating both sides
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d2A

dr2
+

2

r

dA

dr
− 2ik

dA

dr
− 2ik

r
A− k2A = −k2A

The k2A terms cancel:

d2A

dr2
+

2

r

dA

dr
− 2ik

dA

dr
− 2ik

r
A =����−k2A+���k2A

d2A

dr2
+

2

r

dA

dr
− 2ik

dA

dr
=

2ik

r
A (A)

This is a form of Cauchy-Euler equation.

Now, we must solve equation (A) to find A(r)

Rearrange the equation

d2A

dr2
+

(
2

r
− 2ik

)
dA

dr
=

2ik

r
A

Since we have both real and imaginary terms in (A), let’s look at the imaginary part only.

The imaginary terms are:

−2ik
dA

dr
=

2ik

r
A

Divide both sides by −2ik:

dA

dr
= −A

r

Solve the differential equation. This is a separable first-order ODE:

dA

A
= −dr

r

Integrate both sides of the differential equation

∫
dA

A
=

∫
−dr

r

ln |A| = − ln |r|+ C1
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ln |A| = ln

∣∣∣∣1r
∣∣∣∣+ C1

Exponentiate

A = eln(1/r)+C1 = eC1 · 1
r

Let C = eC1 :

A(r) =
C

r

Let’s verify whether this satisfies the real part

With A = C/r:

•
dA

dr
= −C

r2

•
d2A

dr2
=

2C

r3

Substitute into the original equation (A):

2C

r3
+

2

r

(
−C

r2

)
− 2ik

(
−C

r2

)
=

2ik

r

(
C

r

)

2C

r3
− 2C

r3
+

2ikC

r2
=

2ikC

r2
✓

The equation is satisfied!

So, the final answer is:

A(r) =
C

r

Taking C = 1 gives us:

A(r) =
1

r

This is the geometrical spreading factor for spherical waves in 3D. The amplitude of the

wave decays inversely with distance r because the wave’s energy is being distributed over
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an ever-increasing spherical surface area (4πr2). This is a fundamental property of waves in

3D. The waveform remains unchanged (dispersionless) during propagation.

Testing for ∇2ϕ

Let’s verify this satisfies the wave equation. Assume A(r) = C/r. Then:

ϕ =
C

r
ei(ωt−kr)

First derivative:

∂ϕ

∂r
= −C

r2
ei(ωt−kr) − ik

C

r
ei(ωt−kr) = −C

(
1

r2
+

ik

r

)
ei(ωt−kr)

Now compute the key term for the Laplacian:

r2
∂ϕ

∂r
= −C (1 + ikr) ei(ωt−kr)

∂

∂r

(
r2
∂ϕ

∂r

)
= −C(ik)(ikr)ei(ωt−kr) = Ck2rei(ωt−kr)

Therefore, the Laplacian is:

∇2ϕ =
1

r2
∂

∂r

(
r2
∂ϕ

∂r

)
=

1

r2
(
Ck2rei(ωt−kr)

)
=

Ck2

r
ei(ωt−kr)

∇2ϕ =
Ck2

r
ei(ωt−kr) = k2 C

r
ei(ωt−kr) = k2ϕ

The time derivative is:

ϕ̈ =
∂2ϕ

∂t2
= (iω)2

C

r
ei(ωt−kr) = −ω2C

r
ei(ωt−kr)

Plugging into the wave equation:

1

α2
ϕ̈ = ∇2ϕ
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1

α2

(
−ω2C

r
ei(ωt−kr)

)
=

Ck2

r
ei(ωt−kr)

Canceling common terms, we get the dispersion relation:

−ω2

α2
= k2 or k2 =

ω2

α2

This confirms that k is constant, and our solution is valid. It is for this reason that solution

in Part 1 above is wrong because k has an extra term which is imaginary.

Final Solution

The exact 3D spherical wave solution is:

ϕ(r, t) = A(r)ei(ωt−kr) =
1

r
ei(ωt−kr)

Key Summary:

• ✓ Geometrical spreading: amplitude decreases as 1/r

• ✓ Phase propagation: ei(ωt−kr) travels at speed α

• ✓ Energy conservation: |ϕ|2 × r2 = constant

• ✓ Singularity at origin: ϕ → ∞ as r → 0 (point source)

Part 4: The Asymptotic 2D “Spherical” (Cylindrical) Wave Solution

In many applications (e.g., a long line source), waves spread out cylindrically in a 2D plane.

The Laplacian for cylindrical coordinates with radial symmetry is:

∇2ϕ =
1

r

∂

∂r

(
r
∂ϕ

∂r

)
By analogy with the 3D case above, one might try a solution with a 1/

√
r amplitude decay,

as the perimeter of a circle is 2πr, suggesting intensity decays as 1/r, and thus amplitude as

1/
√
r.
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ϕ(r, t) =
1√
r
ei(ωt−kr)

Now, we will substitute this trial solution into the scalar wave equation to see if it works.

Computing the Derivatives

First, compute the spatial derivatives:

∂ϕ

∂r
=

(
−1

2
r−3/2 − ikr−1/2

)
ei(ωt−kr) = −

(
1

2r
+ ik

)
1√
r
ei(ωt−kr)

Now compute r ∂ϕ
∂r
:

r
∂ϕ

∂r
= −

(
1

2
+ ikr

)
1√
r
ei(ωt−kr)

Now compute the Laplacian term:

∂

∂r

(
r
∂ϕ

∂r

)
=

∂

∂r

[
−
(
1

2
+ ikr

)
r−1/2ei(ωt−kr)

]

Let f(r) = −
(
1
2
+ ikr

)
ei(ωt−kr)

Using the product rule:

f ′(r) = −
[
(ik)r−1/2 +

(
1

2
+ ikr

)(
−1

2
r−3/2 − ikr−1/2

)]
ei(ωt−kr)

Let’s compute this carefully:

• Derivative of first part: d
dr
[1
2
+ ikr] = ik

• So first term: −(ik)r
−1
2 ei(ωt−kr)

• Second term: −
(
1
2
+ ikr

)
× d

dr
[r−1/2 ei(ωt−kr)]

• d
dr
[r−1/2 ei(ωt−kr)] =

(
−1

2
r−3/2 − ikr−1/2

)
ei(ωt−kr)

Putting it all together:

f ′(r) = −ikr−1/2e−ikr −
(
1

2
+ ikr

)(
−1

2
r−3/2 − ikr−1/2

)
ei(ωt−kr)
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Multiply out the second term:(
1

2
+ ikr

)(
−1

2
r−3/2 − ikr−1/2

)
= −1

4
r−3/2 − ik

2
r−1/2 − ik

2
r−1/2 + k2r1/2

= −1

4
r−3/2 − ikr−1/2 + k2r1/2

So:

f ′(r) = −ikr−1/2e−ikr −
(
−1

4
r−3/2 − ikr−1/2 + k2r1/2

)
ei(ωt−kr)

=

(
−ikr−1/2 +

1

4
r−3/2 + ikr−1/2 − k2r1/2

)
ei(ωt−kr)

=

(
1

4
r−3/2 − k2r1/2

)
ei(ωt−kr)

Therefore:
∂

∂r

(
r
∂ϕ

∂r

)
=

(
1

4
r−3/2 − k2r1/2

)
ei(ωt−kr)

Now the full Laplacian:

∇2ϕ =
1

r

∂

∂r

(
r
∂ϕ

∂r

)
=

1

r

(
1

4
r−3/2 − k2r1/2

)
ei(ωt−kr)

∇2ϕ =

(
1

4r5/2
− k2

r1/2

)
ei(ωt−kr) (Laplacian)

∇2ϕ =

(
1

4r2
− k2

)
1√
r
ei(ωt−kr) =

(
1

4r2
− k2

)
ϕ

Now compute the time derivative:

ϕ̈ =
∂2ϕ

∂t2
= −ω2 1√

r
ei(ωt−kr) (Time Derivative)

Substituting into the Wave Equation

1

α2
ϕ̈ = ∇2ϕ
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1

α2

(
−ω2 1√

r
ei(ωt−kr)

)
=

(
1

4r5/2
− k2

r1/2

)
ei(ωt−kr)

−ω2

α2

1√
r
ei(ωt−kr) =

(
1

4r2
− k2

)
1√
r
ei(ωt−kr)

Multiply both sides by
√
re−i(ωt−kr):

−ω2

α2
=

1

4r2
− k2

Rearranging:

k2 =
ω2

α2
+

1

4r2
(Dispersion Relation)

This is the key result that shows why the trial solution above fails as an exact solution. k2

should be equal to ω2

α2 .

Physical Interpretation and Asymptotic Solution

The dispersion relation k2 = ω2

α2 +
1

4r2
tells us:

1. The wavenumber k depends on distance r - this is unusual and problematic

2. The wave is dispersive - different frequency components travel at different speeds

3. The waveform changes shape as it propagates

However, in the far field (r ≫ λ), the term 1
4r2

becomes negligible compared to ω2

α2 because:

• k = 2π
λ
, so ω2

α2 = k2
0 where k0 is the constant wavenumber

• When r > 10λ, 1
4r2

≪ k2
0

Therefore, in the far field:

k2 ≈ ω2

α2
⇒ k ≈ ω

α
= k0

Thus, in the far field, our trial solution becomes approximately valid:

ϕ(r, t) ≈ 1√
r
ei(ωt−k0r)

More generally, for any waveform:
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ϕ(r, t) ≈ 1√
r
f(ωt− kr) works well!

So, the trial solution above is an asymptotic solution of the wave equation in the far field

in the 2D spherical coordinate.

The 1/
√
r amplitude decay represents cylindrical geometrical spreading - the wave en-

ergy spreads over cylinders with perimeter proportional to r, so intensity decays as 1/r, and

amplitude as 1/
√
r.

This derivation shows why 2D wave propagation is fundamentally more complex than 3D

propagation, requiring the far-field approximation for simple solutions.

Summary of Part 4

Aspect Mathematical Expres-
sion

Physical Meaning

Exact Relation k2 = ω2

α2 +
1

4r2
Wavenumber depends on posi-
tion

Far Field Condition r ≫ λ Distance much greater than
wavelength

Asymptotic Relation k2 ≈ ω2

α2 Constant wavenumber recovered
Asymptotic Solution ϕ(r, t) ≈ 1√

r
f(ωt− k0r) Wave with cylindrical spreading

Note: The exact 2D solution involves Hankel functions, but 1/
√
r is excellent for r ≫ λ.

——————————————————————————————–

General Summary

Dimension Spreading Factor Exact Solution? Physical Meaning

3D 1/r ✓ Yes Energy over sphere area ∝ r2

2D 1/
√
r ✓ Only asymptotic Energy over circle ∝ r

1D 1 (no decay) ✓ Yes Plane wave, no spreading
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Wave Type Mathematical Form Intensity Distance Dependence

Plane (1D) Aei(ωt−kx) |A|2 No decay

Cylindrical (2D)
A√
r
ei(ωt−kr) (asymptotic, not exact)

|A|2

r
I ∝ 1

r

Spherical (3D)
A

r
ei(ωt−kr) |A|2

r2
I ∝ 1

r2
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