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Raypaths and Wavepaths

Wavepath and raypath are fundamental concepts in wave physics (especially seismology,

acoustics, optics), and they are related but distinct.

Raypath

A raypath is an idealized, geometric path/line that represents the trajectory of seismic

energy (or any wave energy) as if it traveled along a single, infinitesimally thin path.

Key characteristics

• Based on ray theory (or geometric optics/seismology), which assumes high-frequency

waves.

• It assumes infinite frequency, meaning the wave has no wavelength (a pure mathe-

matical line). This allows us to ignore wave effects like diffraction and interference.

• Treats wave propagation like light rays.

• Shows arrival direction, reflection, refraction, and bending due to velocity changes.

• Ignores finite-wavelength effects such as diffraction and scattering.

• Governing Principle: Fermat’s Principle (or the Principle of Least Time):

The raypath between two points is the path that minimizes (or makes stationary)

the travel time.

Use cases

• Travel-time tomography

• Reflection/refraction seismic interpretation
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Wavepath and Raypath

• First-arrival modeling

Wavepath

A wavepath is the volumetric region through which wave energy travels — not just a single

line but a broader zone influenced by the finite wavelength (and thus, finite frequency) of

the wave. A wavepath is a more physical, volumetric concept that represents the region

of a medium actually influenced by a propagating wave. Energy doesn’t just travel on

the infinitesimally thin line (geometric raypath), but spreads out into this region.

Key characteristics

• Accounts for finite-frequency effects.

• Shows where seismic waves are actually sensitive to material properties.

• Governing Principle: Wave theory and scattering.

• Often represented/visualize as:

– Fresnel zones (for transmitted waves), or

– Sensitivity kernels (banana–doughnut kernels) in finite-frequency tomogra-

phy.

• Energy spreads out around the raypath; the medium within the wavepath influences

travel time and amplitude.

Use cases

• Finite-frequency seismic tomography

• Full-waveform inversion (FWI)

• Amplitude and waveform modeling

Raypath vs. Wavepath: Key Differences

Feature Raypath Wavepath
Nature Single geometric line, idealized Finite-volume region, realistic
Physics Based on ray theory (optics) Based on wave theory (scattering, diffraction)
Frequency assumption High frequency (geometric optics) Finite frequency (finite wavelength)
Accounts for diffraction/scattering? No Yes
Sensitivity to material changes Only exactly on the ray Region around ray (Fresnel zone / sensitivity kernel)
Use cases Travel-time analysis Finite-frequency tomography, FWI

Simple Analogy

• Raypath: The straight (or bent) line of a laser pointer.
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Wavepath and Raypath

• Wavepath: The beam of a flashlight — spreads out and interacts with a larger

area.

A. Derivation Based on the Born Approximation

1 Frequency-Domain Helmholtz Equation

The acoustic frequency-domain wave equation is

−ω2κ−1(x)P −∇ · (ρ−1(x)∇P ) = S(x, ω)

(
∇2 + ω2m(x)

)
P (x, ω = −S(x, ω). (1)

where:

• κ(x) is the bulk modulus,

• ρ(x) is the density,

• S(x, ω) is the source term.

• m(x) = 1/c2(x)

For a point source at s, we assume:

S(x, ω) = δ(x− s). (2)

Let the model be decomposed as

m(x) = m0(x) + δm(x), (3)

The unperturbed field P0 satisfies:

[
∇2 + ω2m0

]
P0(x, s) = −δ(x− s)

with solution:

P0(x, s) = G0(x− s)

The perturbed field is:

3



Wavepath and Raypath

P = P0 + δP

2 Derivation of Perturbation Equation

Substitute m = m0 + δm and P = P0 + δP into the wave equation:

(
∇2 + ω2m(x)

)
P (x, ω) = −S(x, ω)

∇2(P0 + δP ) + ω2(m0 + δm)(P0 + δP ) = −δ(x− s)

Separate terms:

[∇2P0 + ω2m0P0] + [∇2δP + ω2m0δP ] + ω2δm(P0 + δP ) = −δ(x− s)

The first bracket equals −δ(x− s) by definition of P0, canceling the RHS:

������−δ(x− s) + [∇2δP + ω2m0δP ] + ω2δm(P0 + δP ) =������−δ(x− s)

∇2δP + ω2m0δP + ω2δm(P0 + δP ) = 0

Rearranged:

−
[
∇2δP + ω2m0δP

]
= ω2δm(P0 + δP )

3 Born Approximation and Integral Solution

(Lippmann-Schwinger)

Assuming δm is small, we can assume δP is small compared to P0. So, we neglect the

second-order term δm δP (second order in perturbation):

−
[
∇2δP + ω2m0δP

]
= ω2δmP0 + ω2δmδP︸ ︷︷ ︸

drop this

(4)

−
[
∇2δP + ω2m0δP

]
≈ ω2δmP0

This can be written as: [
∇2 + ω2m0

]
δP = −ω2δmP0 (5)
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Wavepath and Raypath

Equation (5) is a Helmholtz equation for δP with source term −ω2δmP0. Using the

Green’s function G0, where:

[
∇2 + ω2m0

]
G0(r,x) = −δ(r− x)

with G0 =
ei|r−x|

4π|r−x|

the solution is:

Using the convolution property:

δP (r, s) =

∫
Ω

G0(r,x)δ(r− x)dx. (6)

δP (r, s) =

∫
Ω

G0(r,x) · ω2δmP0 (7)

δP (r, s) ≈
∫
Ω

ω2G0(r,x)δm(x)P0(x, s) dx (8)

P0(x, ω) represents the background or unperturbed wavefield from the source point s to

the scatterer at x which can be represented as G0(x, ω, s)

If we had not dropped the second order perturbation term in equation 4, then equation

8 would be like:

δP (r, s) =

∫
Ω

G0(r,x)
[
ω2δm(x)P0(x, s) + ω2δm(x)δP

]
dx (9)

Thus, the final integral representation is:

δP (r, s) ≈
∫
Ω

ω2G0(r,x)δm(x)P0(x, s) dx (10)

This is the exact Lippmann–Schwinger form for the scattered field. This represents the

scattered wavefield in terms of Green’s function and the perturbation in medium prop-

erties. The scattered wave measured at r is the superposition (integral) of contributions

from all point scatterers δm(x), each one re-radiating (weighted by the incident amplitude

at x and the Green’s function from x to r).

The integral representation of the total wavefield,we have:

P (r) = P0(r) + δP (r)

5



Wavepath and Raypath

P (r) = P0(r) +

∫
Ω

G0(r,x)ω
2δm(x)P0(x) dx, (11)

where the background (unperturbed) field is

(
∇2 + ω2m0(x)

)
P0(x, ω) = −S(x, ω)

P0(r) =

∫
G0(r,x)S(x) dx, (12)

and for a point source at s,

S(x) = δ(x− s), P0(r) = G0(r, s). (13)

Rearranging the integral equation for the scattered field δP (r) = P (r) − P0(r) gives

equation 10.

4 Wavepath Sensitivity Kernel KmP

Define the kernel (the “wavepath” sensitivity kernel) as the factor multiplying δm(x) in

the Born integral

KmP (r,x) := ω2G0(r,x)P0(x, s)

This is the Fréchet (Born) kernel.

So the Born linear mapping is

δP (r, s) =

∫
Ω

KmP (r,x) δm(x) dx

Since P0(x, s) = G0(x− s) (for a unit impulsive source at s):

KmP (r,x) := ω2G0(r,x) P0(x, s)︸ ︷︷ ︸
∼G0(x,s)

KmP (r,x) = ω2G0(r,x)G0(x, s)

Substituting the Green’s function expression:
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Wavepath and Raypath

In 3D homogeneous space:

G0(r,x) =
1

4π|r− x|
eik0|r−x|, k0 =

ω

v0
. (14)

For a point source at s,

P0(x, s) = G0(x, s) =
1

4π|x− s|
eik0|x−s|. (15)

Thus:

KmP (r,x) = ω2 1

(4π)2
eik0(|x−r|+|x−s|)

|x− r| |x− s|
(16)

KmP (r,x) =
( ω

4π

)2 1

|x− r||x− s|
eik0(|x−r|+|x−s|) (17)

KmP is often called a sensitivity kernel (or Fréchet kernel). It is not exactly the gradient

of a simple multivariate function but it is the kernel of the linearized forward map from

δm to the data δP . The kernel contains a geometric amplitude factor 1/(|r− x|, |x− s|)
and a phase eik0(|r−x|+|x−s|). The phase depends on the total path length from source s to

scatterer x to receiver r.

5 Fresnel Zones as Confocal Ellipses (equal-phase loci)

The phase of the kernel is constant when

L(x) = |x− s|+ |r− x| = constant. (18)

Surfaces (in 2-D cross sections: curves) of constant L are confocal ellipses with foci at s

and r. This is the definition of a confocal ellipse.

Definition (ellipse by foci): an ellipse is the locus of points x = (x, y) such that the

sum of distances to two fixed foci equals a constant (2a):

|x− s|+ |x− r| = 2a.

If the foci lie at (±c, 0) (i.e. separated by (2c)) and the ellipse is centered at the origin,

the standard ellipse equation is

x2

a2
+

y2

b2
= 1, b2 = a2 − c2.
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Wavepath and Raypath

Let the foci be at s = (−c, 0) and r = (c, 0). Points satisfying

|x− s|+ |x− r| = 2a (19)

form an ellipse with:

semi-major axis: a, (20)

semi-minor axis: b =
√
a2 − c2, (21)

focal distance: 2c. (22)

c is the distance from center to each focus, with 0 ≤ c < a. 2a is the constant total path

length (sum of distances to foci)

Thus the ellipse equation is

x2

a2
+

y2

a2 − c2
= 1. (23)

Fresnel Zones:

When the phase k0L(x) differs by integer multiples of 2π, i.e.

Successive Fresnel zones correspond to

k0L(x) = constant + 2πn

k0 (|x− s|+ |r− x|) = constant + 2πn. (24)

the points x lie on confocal ellipses with discrete values of a. These annular elliptical

regions between successive ellipses are the Fresnel zones: within the first Fresnel zone the

scattered contributions add mostly in phase at the receiver; outside they tend to cancel

more. These zones show constructive and destructive interference around the geometric

ray path.

Thus the equal-phase curves of the kernel are confocal ellipses (2-D slices) or confocal

ellipsoids (3-D) with foci at source and receiver. That is why the kernel’s significant

energy is concentrated in a “banana” or “peanut” shaped region around the geometrical

ray: the first few Fresnel zones around the ray contain most of the coherent sensitivity.
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Wavepath and Raypath

B. Derivation Based on the Rytov Approximation

We can write the acoustic wave equation above again as:

−
(
∇2 + ω2m(x)

)
P (x, ω) = S(x, ω).

[
∇2 + ω2m(x)

]
P (x) = 0

where m(x) = 1/c2(x) is the slowness squared, ω is angular frequency, and c(x) is wave

velocity.

Rytov’s Complex Phase Representation

Rytov’s key insight is to represent the wavefield as:

P (x) = eϕ(x, ω)

where ϕ(x) = ϕ0(x) + δϕ(x) is a complex phase function containing both amplitude

and phase information.

Wave Equation in Complex Phase Form

First Derivative

∇P = ∇eϕ = (∇ϕ)eϕ = (∇ϕ)P

Second Derivative

Using the product rule:

∇2P = ∇ · (∇P ) = ∇ · [(∇ϕ)P ]

Since P = eϕ:

∇2P = ∇ · [(∇ϕ)eϕ] = [∇2ϕ+ (∇ϕ)2]eϕ

Thus:

∇2P = [∇2ϕ+ (∇ϕ)2]P
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Wavepath and Raypath

Substitute the derivatives into the wave equation

∇2P + ω2mP = 0

Substituting:

[∇2ϕ+ (∇ϕ)2]P + ω2mP = 0

Since P ̸= 0, divide by P :

∇2ϕ+ (∇ϕ)2 + ω2m = 0

This is the exact wave equation in Rytov’s complex phase form.

Derivation of Perturbation Equation

Let:

m(x) = m0 + δm(x)

ϕ(x) = ϕ0(x) + δϕ(x)

where ϕ0 is the background phase and δϕ is the phase perturbation.

For the background (unperturbed) medium (m0 constant):

∇2ϕ0 + (∇ϕ0)
2 + ω2m0 = 0 (25)

For the perturbed equation:

Substitute m = m0 + δm and ϕ = ϕ0 + δϕ into (2):

∇2(ϕ0 + δϕ) + [∇(ϕ0 + δϕ)]2 + ω2(m0 + δm) = 0

Expand the gradient squared term:

[∇(ϕ0 + δϕ)]2 = (∇ϕ0)
2 + 2∇ϕ0 · ∇δϕ+ (∇δϕ)2

So the equation becomes:
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Wavepath and Raypath

∇2ϕ0 +∇2δϕ+ (∇ϕ0)
2 + 2∇ϕ0 · ∇δϕ

+ (∇δϕ)2 + ω2m0 + ω2δm = 0 (26)

Subtract the background equation (25) from (26):

[∇2ϕ0 + (∇ϕ0)
2 + ω2m0] +∇2δϕ+ 2∇ϕ0 · ∇δϕ+ (∇δϕ)2 + ω2δm = 0

The terms in brackets sum to zero (from equation 25), so:

∇2δϕ+ 2∇ϕ0 · ∇δϕ+ (∇δϕ)2 + ω2δm = 0 (27)

This is the exact perturbation equation for Rytov’s method.

Linearization

We want to obtain a linear equation for δϕ. Notice the problematic term (∇δϕ)2 which

is nonlinear.

Rearrange the perturbation equation:

−[ω2δm+ 2∇ϕ0 · ∇δϕ+ (∇δϕ)2 +∇2δϕ] = 0 (28)

We would like something of the form:

−[ω2m0 +∇2](P0δϕ) = RHS(δm, P0)

Using P0 = eϕ0 , let’s compute ∇2(P0δϕ):

First Derivative

∇(P0δϕ) = (∇P0)δϕ+ P0∇δϕ

Since P0 = eϕ0 , ∇P0 = (∇ϕ0)P0:

∇(P0δϕ) = P0[(∇ϕ0)δϕ+∇δϕ]
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Wavepath and Raypath

Second Derivative

∇2(P0δϕ) = ∇ · [P0(∇ϕ0δϕ+∇δϕ)]

Expand:

∇2(P0δϕ) = (∇P0) · (∇ϕ0δϕ+∇δϕ) + P0∇ · (∇ϕ0δϕ+∇δϕ)

First term: ∇P0 = (∇ϕ0)P0, so:

(∇P0) · (∇ϕ0δϕ+∇δϕ) = P0[(∇ϕ0)
2δϕ+∇ϕ0 · ∇δϕ]

Second term:

∇ · (∇ϕ0δϕ+∇δϕ) = ∇2ϕ0δϕ+∇ϕ0 · ∇δϕ+∇2δϕ

So:

∇2(P0δϕ) = P0[(∇ϕ0)
2δϕ+∇ϕ0 · ∇δϕ

+∇2ϕ0δϕ+∇ϕ0 · ∇δϕ+∇2δϕ]

Combine terms:

∇2(P0δϕ) = P0[(∇ϕ0)
2δϕ+∇2ϕ0δϕ+ 2∇ϕ0 · ∇δϕ+∇2δϕ] (29)

From (27), we have:

∇2δϕ+ 2∇ϕ0 · ∇δϕ = −[(∇δϕ)2 + ω2δm]

Multiply by P0:

P0[∇2δϕ+ 2∇ϕ0 · ∇δϕ] = −P0[(∇δϕ)2 + ω2δm] (30)

From (29), note that:

P0[∇2δϕ+ 2∇ϕ0 · ∇δϕ] = ∇2(P0δϕ)− P0[(∇ϕ0)
2δϕ+∇2ϕ0δϕ] (31)
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Wavepath and Raypath

Using Background Equation for ϕ0

From the background equation (25):

∇2ϕ0 + (∇ϕ0)
2 + ω2m0 = 0

Multiply by P0δϕ:

P0[(∇ϕ0)
2 +∇2ϕ0]δϕ = −ω2m0P0δϕ (32)

Substitute (31) into (30):

∇2(P0δϕ)− P0[(∇ϕ0)
2 +∇2ϕ0]δϕ = −P0[(∇δϕ)2 + ω2δm]

Now use (32) to replace P0[(∇ϕ0)
2 +∇2ϕ0]δϕ:

∇2(P0δϕ) + ω2m0P0δϕ = −P0[(∇δϕ)2 + ω2δm]

Rearrange:

−[ω2m0 +∇2](P0δϕ) = P0[ω
2δm+ (∇δϕ)2]︸ ︷︷ ︸

drop this

(33)

This is the exact Rytov equation.

The Rytov approximation assumes:

(∇δϕ)2 ≪ ω2δm

This is valid for smooth perturbations (disk diffractors) where δϕ varies slowly.

With this approximation:

−[ω2m0 +∇2](P0δϕ) ≈ ω2δmP0 (34)

Comparison with Born Approximation

Born Form

Recall Born approximation for δP :
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Wavepath and Raypath

−[ω2m0 +∇2]δP ≈ ω2δmP0

Rytov Form

Rytov approximation:

−[ω2m0 +∇2](P0δϕ) ≈ ω2δmP0

Connection

For weak scattering (δϕ ≪ 1):

P = eϕ0+δϕ = eϕ0eδϕ ≈ P0(1 + δϕ)

So:

δP = P − P0 ≈ P0δϕ

Thus in the weak-scattering limit, Rytov reduces to Born.

Sensitivity Kernel for Rytov

Equation (34) is:

[∇2 + ω2m0](P0δϕ) = −ω2δmP0

This is identical in form to the Born equation, so we can solve using Green’s functions:

P0(r)δϕ(r) =

∫
ω2G0(r,x)δm(x)P0(x)dx

Thus:

δϕ(r) =

∫
ω2G0(r,x)

P0(r)
δm(x)P0(x)dx

Sensitivity Kernel Definition

The sensitivity kernel for δϕ is:
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Wavepath and Raypath

Kϕ
m(r,x) := ω2G0(r,x)P0(x)

P0(r)

Explicit Form in 3D Homogeneous Medium

For a point source at s:

P0(x) = G0(x, s) =
eik0|x−s|

4π|x− s|

G0(r,x) =
eik0|r−x|

4π|r− x|

P0(r) = G0(r, s) =
eik0|r−s|

4π|r− s|

Substituting:

Kϕ
m(r,x) = ω2 ·

eik0|r−x|

4π|r−x| ·
eik0|x−s|

4π|x−s|
eik0|r−s|

4π|r−s|

Simplify:

Kϕ
m(r,x) =

ω2

4π
· eik0(|r−x|+|x−s|−|r−s|)

|r− x||x− s|/|r− s|

Physical Interpretation

Phase Factors Comparison

• Born kernel: eik0(|x−r|+|x−s|)

• Rytov kernel: eik0(|x−r|+|x−s|−|r−s|)

The Rytov kernel has phase subtracted by the direct path |r− s|, which represents

phase delay relative to unperturbed wave.

Amplitude Factors Comparison

• Born:
1

|x− r||x− s|

• Rytov:
1

|x− r||x− s|/|r− s|
The Rytov kernel is normalized by the source-receiver distance.
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Wavepath and Raypath

When to Use Each Approximation

• Born Approximation: Point scatterers, sharp boundaries, strong perturbations

• Rytov Approximation: Smooth perturbations, disk diffractors, extended scat-

terers

• Weak scattering limit: Both approximations converge

Key Summary of Equations

1. Exact wave equation in phase form:

∇2ϕ+ (∇ϕ)2 + ω2m = 0

2. Exact perturbation equation:

∇2δϕ+ 2∇ϕ0 · ∇δϕ+ (∇δϕ)2 + ω2δm = 0

3. Exact Rytov equation:

−[ω2m0 +∇2](P0δϕ) = P0[ω
2δm+ (∇δϕ)2]

4. Rytov approximation (assuming (∇δϕ)2 ≪ ω2δm):

−[ω2m0 +∇2](P0δϕ) ≈ ω2δmP0

5. Rytov sensitivity kernel:

Kϕ
m(r,x) =

ω2

4π
· eik0(|r−x|+|x−s|−|r−s|)

|r− x||x− s|/|r− s|

Conclusion

The Rytov approximation provides an alternative linearization scheme to the Born ap-

proximation, particularly well-suited for smooth, extended scatterers where phase

perturbations accumulate gradually along the wave path. Unlike Born which linearizes

the wavefield directly, Rytov linearizes the complex phase, making it more robust for cer-

tain types of smooth perturbations while maintaining the same mathematical structure

for inversion.
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Wavepath and Raypath

C. Derivation Based on the Ray Approximation

The ray approximation is a high-frequency limit (ω → ∞) of wave propagation where

waves can be treated as traveling along geometric rays. This is also known as geometric

optics in optics or geometric seismology in seismology.

Travel Time Definition

For a ray path Γ from point A to point B, the travel time T is given by:

T =

∫ B

A

ds

c(x)

where ds is the arc length element along the ray, and c(x) is the wave velocity.

Since m(x) = 1/c2(x) is the slowness squared, we can write:

T =

∫ B

A

√
m(x) ds

Ray Path Representation Using Dirac Delta

Integral Representation

We can represent the travel time as an integral over the entire domain Ω using the Dirac

delta function:

T =

∫
Ω

√
m(x) δ(x− xray) dx

where xray(s) is the position along the ray path parameterized by arc length s.

The delta function δ(x−xray) is a functional that picks out the ray path in the domain.

More precisely, we should write:

T =

∫ B

A

√
m(xray(s)) ds =

∫
Ω

√
m(x)δL(x− xray) dx

where δL is a line delta function concentrated on the ray path.

Perturbation Analysis

Background and Perturbed Quantities

Let:

• Background velocity: c0(x), with m0(x) = 1/c20(x)
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Wavepath and Raypath

• Perturbed velocity: c(x) = c0(x) + δc(x), with m(x) = m0(x) + δm(x)

• Background ray path: x
(0)
ray(s) (ray in the background medium)

• Perturbed ray path: xray(s) (ray in the perturbed medium)

The travel times are:

T0 =

∫ B

A

√
m0(x

(0)
ray(s)) ds

T =

∫ B

A

√
m(xray(s)) ds

Using Integral Representation

In delta function notation:

T0 =

∫
Ω

√
m0(x) δ(x− x(0)

ray) dx

T =

∫
Ω

√
m(x) δ(x− xray) dx

First-Order Perturbation Analysis

Taylor Expansion of Square Root

For small perturbations δm ≪ m0:

√
m0 + δm =

√
m0

√
1 +

δm

m0

=
√
m0

(
1 +

1

2

δm

m0

− 1

8

(
δm

m0

)2

+ · · ·

)

Keeping only first-order terms:

√
m0 + δm ≈

√
m0 +

1

2

δm
√
m0

Since
√
m0 = 1/c0, we can also write:

√
m0 + δm−

√
m0 ≈

1

2

δm
√
m0

= −1

2
c0δm

because δm = − 2
c30
δc (from m = 1/c2).
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Wavepath and Raypath

Perturbation in Travel Time

The travel time perturbation is:

δT = T − T0 =

∫
Ω

[√
m(x) δ(x− xray)−

√
m0(x) δ(x− x(0)

ray)
]
dx (35)

The Born Approximation for Ray Theory

Key Simplification

In the ray Born approximation or Fermat’s principle approximation, we make a

crucial simplification:

δ(x− xray) ≈ δ(x− x(0)
ray)

This means we ignore the change in ray path geometry due to the velocity pertur-

bation. This is valid when:

1. High frequency limit (ω → ∞): The ray is well-defined and doesn’t bend much

2. Small perturbations: δc/c0 ≪ 1

3. Smooth perturbations: The velocity field varies slowly relative to wavelength

Physically, this is Fermat’s principle: to first order, the travel time is stationary with

respect to small changes in ray path.

Applying the Approximation

With this approximation, equation (35) becomes:

δT ≈
∫
Ω

[√
m(x)−

√
m0(x)

]
δ(x− x(0)

ray) dx

Detailed Derivation Step by Step

Start with Exact Perturbation

δT =

∫
Ω

√
m(x) δ(x− xray) dx−

∫
Ω

√
m0(x) δ(x− x(0)

ray) dx

Apply Ray Path Approximation

δ(x− xray) ≈ δ(x− x(0)
ray) + higher order terms

Keeping only zeroth order in ray path perturbation:
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Wavepath and Raypath

δT ≈
∫
Ω

[√
m(x)−

√
m0(x)

]
δ(x− x(0)

ray) dx

Expand Square Root√
m(x)−

√
m0(x) =

√
m0(x) + δm(x)−

√
m0(x)

Taylor expansion:

√
m0 + δm−

√
m0 =

1

2

δm
√
m0

− 1

8

(δm)2

m
3/2
0

+ · · ·

Keep first order only:

√
m0 + δm−

√
m0 ≈

1

2

δm
√
m0

Substitute

δT ≈
∫
Ω

1

2

δm(x)√
m0(x)

δ(x− x(0)
ray) dx

Express in Terms of Velocity

Since
√
m0 = 1/c0, we have:

1
√
m0

= c0

Also, from m = 1/c2, we get:

δm = m−m0 =
1

c2
− 1

c20

For small perturbations c = c0 + δc:

1

c2
=

1

(c0 + δc)2
=

1

c20(1 + δc/c0)2
=

1

c20

(
1− 2

δc

c0
+ 3

δc2

c20
− · · ·

)

So:

δm =
1

c2
− 1

c20
= − 2

c30
δc+

3

c40
δc2 + · · ·

δm ≈ − 2

c30
δc
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Wavepath and Raypath

But it’s cleaner to work with m directly. Using 1
2

δm√
m0

= 1
2
c0δm:

Thus:

δT ≈
∫
Ω

1

2
c0(x)δm(x) δ(x− x(0)

ray) dx (36)

Sign Convention Analysis

Relationship Between δc and δm

From m = 1/c2:

δm = m−m0 =
1

c2
− 1

c20
≈ − 2

c30
δc

Physical Consistency Check

Consider a velocity increase (δc > 0):

• Then δm < 0 (slowness squared decreases)

• Travel time should decrease (δT < 0) since waves travel faster

In equation (5):

• If δc > 0, then δm < 0

• So 1
2
c0δm < 0

• Therefore δT < 0 (travel time decreases) ✓

Sensitivity Kernel Definition

The sensitivity kernel KT
m(x) is defined such that:

δT =

∫
Ω

KT
m(x)δm(x) dx

From equation (36) (with corrected sign):

δT ≈
∫
Ω

1

2
c0(x)δm(x) δ(x− x(0)

ray) dx

Therefore:

KT
m(x) =

1

2
c0(x)δ(x− x(0)

ray) (37)

21



Wavepath and Raypath

Alternative Derivation Using Fermat’s Principle

Functional Derivative Approach

Travel time functional:

T [m] =

∫ B

A

√
m(x(s)) ds

where x(s) is the ray path, which itself depends on m.

By Fermat’s principle, the ray path minimizes T . For a first-order perturbation:

δT = δTdirect + δTray

where:

• δTdirect comes from changing m along the fixed path

• δTray comes from changing the path

But by Fermat’s principle, to first order δTray = 0 (stationarity condition). So:

δT ≈
∫ B

A

1

2
√
m0

δmds =

∫
Ω

1

2
√

m0(x)
δm(x) δ(x− x(0)

ray) dx

Since
√
m0 = 1/c0:

δT ≈
∫
Ω

1

2
c0(x)δm(x) δ(x− x(0)

ray) dx

Physical Interpretation

Kernel Structure

The ray sensitivity kernel is:

KT
m(x) =

1

2
c0(x)δ(x− x(0)

ray)

This is infinitely thin - it’s only non-zero exactly on the geometric ray. This is the

high-frequency limit where waves have no width.

Comparison with Finite-Frequency Kernels

For finite frequency, the sensitivity kernel has finite width (Fresnel zone). As ω → ∞:
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Wavepath and Raypath

• Finite-frequency kernel: Km(x) has width ∼
√
λL (Fresnel zone)

• Ray kernel: KT
m(x) collapses to a line (delta function)

The ray kernel is the ω → ∞ limit of the finite-frequency kernel.

Travel Time Sensitivity

The kernel tells us:

• Where a velocity change affects travel time: only along the ray path

• How much it affects travel time: proportional to c0(x)/2

• Higher sensitivity where background velocity is higher

Connection to Other Representations

Sensitivity to Velocity c

If we want sensitivity to c rather than m:

Since δm ≈ − 2
c30
δc:

δT ≈
∫
Ω

1

2
c0(x)

(
− 2

c0(x)3
δc(x)

)
δ(x− x(0)

ray) dx

= −
∫
Ω

1

c0(x)2
δc(x)δ(x− x(0)

ray) dx

So the velocity sensitivity kernel is:

KT
c (x) = − 1

c0(x)2
δ(x− x(0)

ray)

Sensitivity to Slowness s = 1/c

Slowness s = 1/c =
√
m, so δs = δ(

√
m) ≈ 1

2
√
m0

δm = c0
2
δm.

Then:

δT ≈
∫
Ω

δs(x)δ(x− x(0)
ray) dx

So:

KT
s (x) = δ(x− x(0)

ray)

This makes sense: travel time is simply integral of slowness along path.
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Wavepath and Raypath

Summary of Key Results

For the ray approximation (ω → ∞):

δT ≈ 1

2

∫
Ω

c0(x)δm(x) δ(x− x(0)
ray) dx

Sensitivity kernel for m:

KT
m(x) =

1

2
c0(x)δ(x− x(0)

ray)

Important Notes

1. High-frequency limit: Valid when ω → ∞, wavelength λ → 0

2. Thin kernel: Sensitivity only on the geometric ray path

3. Fermat’s principle: Ray path perturbation contribution is second order

Applications

• Seismic tomography (ray-based)

• Geophysical inversion

• Medical ultrasound tomography

• Any high-frequency wave propagation problem

The ray approximation provides the simplest possible sensitivity kernel and forms the ba-

sis for many tomographic methods, though finite-frequency kernels are needed for higher

resolution.
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