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Raypaths and Wavepaths

Wavepath and raypath are fundamental concepts in wave physics (especially seismology,

acoustics, optics), and they are related but distinct.

Raypath

A raypath is an idealized, geometric path/line that represents the trajectory of seismic

energy (or any wave energy) as if it traveled along a single, infinitesimally thin path.

Key characteristics

e Based on ray theory (or geometric optics/seismology), which assumes high-frequency

waves.

e It assumes infinite frequency, meaning the wave has no wavelength (a pure mathe-

matical line). This allows us to ignore wave effects like diffraction and interference.
e Treats wave propagation like light rays.
e Shows arrival direction, reflection, refraction, and bending due to velocity changes.
e Ignores finite-wavelength effects such as diffraction and scattering.

e Governing Principle: Fermat’s Principle (or the Principle of Least Time):
The raypath between two points is the path that minimizes (or makes stationary)

the travel time.

Use cases

e Travel-time tomography

e Reflection/refraction seismic interpretation
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e First-arrival modeling

Wavepath

A wavepath is the volumetric region through which wave energy travels — not just a single

line but a broader zone influenced by the finite wavelength (and thus, finite frequency) of

the wave. A wavepath is a more physical, volumetric concept that represents the region

of a medium actually influenced by a propagating wave. Energy doesn’t just travel on

the infinitesimally thin line (geometric raypath), but spreads out into this region.

Key characteristics

e Accounts for finite-frequency effects.

e Shows where seismic waves are actually sensitive to material properties.

e Governing Principle: Wave theory and scattering.

— Fresnel zones (for transmitted waves), or

Often represented /visualize as:

— Sensitivity kernels (banana—doughnut kernels) in finite-frequency tomogra-

phy.

travel time and amplitude.

Use cases

e Finite-frequency seismic tomography

e Full-waveform inversion (FWTI)

e Amplitude and waveform modeling

Raypath vs. Wavepath: Key Differences

Energy spreads out around the raypath; the medium within the wavepath influences

Feature Raypath ‘Wavepath
Nature Single geometric line, idealized Finite-volume region, realistic
Physics Based on ray theory (optics) Based on wave theory (scattering, diffraction)

Frequency assumption

High frequency (geometric optics)

Finite frequency (finite wavelength)

Accounts for diffraction/scattering?

No

Yes

Sensitivity to material changes

Only exactly on the ray

Region around ray (Fresnel zone / sensitivity kernel)

Use cases

Travel-time analysis

Finite-frequency tomography, FWI

Simple Analogy

e Raypath: The straight (or bent) line of a laser pointer.
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e Wavepath: The beam of a flashlight — spreads out and interacts with a larger

area.

A. Derivation Based on the Born Approximation

1 Frequency-Domain Helmholtz Equation

The acoustic frequency-domain wave equation is

—wW?k TN X)P =V - (pH(x)VP) = S(x,w)

(V? + w’m(x)) P(x,w = —S(x,w). (1)

where:
e r(x) is the bulk modulus,
e p(x) is the density,
e S(x,w) is the source term.
o m(x)=1/c*(x)

For a point source at s, we assume:

S(x,w) =0(x —s). (2)
Let the model be decomposed as

m(x) = mo(x) + om(x), (3)

The unperturbed field F, satisfies:

[V? 4+ w?mg] Po(x,s) = —d(x —s)

with solution:

Py(x,5) = Go(x —5)

The perturbed field is:
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P=PF,+0P

2 Derivation of Perturbation Equation

Substitute m = mg + dm and P = Py + 6 P into the wave equation:

(V? +w’m(x)) P(x,w) = —S(x,w)

V2(Py + 6P) + w?(mo + 0m)(Py + 6 P) = —0(x — s)
Separate terms:

[V2Py + w?mgPo] + [V25P + w’mod P] + w?0m(Py + §P) = —6(x — s)

The first bracket equals —d(x — s) by definition of Fy, canceling the RHS:

—8(x=8) + [V?0P + w’mod P] + w?dm(Py + 0 P) = —3(%=5)
V25P + w*mod P + w?*sm(Py + 6P) =0

Rearranged:

— [V?6P + w*modP| = w*dm(Py + 6 P)

3 Born Approximation and Integral Solution

(Lippmann-Schwinger)

Assuming dm is small, we can assume 0P is small compared to Fy. So, we neglect the

second-order term dm 6 P (second order in perturbation):

— [V25P + w2m05P] = w?omPy + w?omoP, (4)

drop this
— [VQ(SP + w2m0§P] ~ w2dm P,

This can be written as:
[V? 4+ w’mg] 6P = —w*dm Py (5)
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Equation (5) is a Helmholtz equation for §P with source term —w?ém Py. Using the

Green’s function Gg, where:

[V? + w’myg] Go(r,x) = —d(r — x)

with Go == etlr ]

4d7|r—x|

the solution is:

Using the convolution property:

OP(r,s) = /QGO(I',X)(S(r — X)dx. (6)
O0P(r,s) = /QGO(I‘,X) -w?*dm P, (7)
dP(r,s) ~ /Qw2G0(r,x)5m(x)Po(x, s) dx (8)

Py(x,w) represents the background or unperturbed wavefield from the source point s to

the scatterer at x which can be represented as Go(x,w,s)

If we had not dropped the second order perturbation term in equation 4, then equation
8 would be like:

dP(r,s) = /QGO(r,x) [w?dm(x) Py(x, ) + w’dm(x)dP] dx 9)

Thus, the final integral representation is:

dP(r,s) %/ﬂw2G0(r,x)6m(x)P0(x, s) dx (10)

This is the exact Lippmann—Schwinger form for the scattered field. This represents the
scattered wavefield in terms of Green’s function and the perturbation in medium prop-
erties. The scattered wave measured at r is the superposition (integral) of contributions
from all point scatterers dm(x), each one re-radiating (weighted by the incident amplitude

at x and the Green’s function from x to r).

The integral representation of the total wavefield,we have:

P(r) = Py(r) + dP(r)
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P(r) = Py(r) + /Q Go(r, x) w?dm(x) Py(x) dx, (11)

where the background (unperturbed) field is

(V? + w’mp(x)) Py(x,w) = —S(x,w)

Py(r) = / Golr, x)S(x) dx, (12)

and for a point source at s,

S(x) =0(x—s), Py(r) = Gy(r,s). (13)

Rearranging the integral equation for the scattered field 0P(r) = P(r) — Py(r) gives

equation 10.

4 Wavepath Sensitivity Kernel K, P

Define the kernel (the “wavepath” sensitivity kernel) as the factor multiplying dm(x) in
the Born integral

K, P(r,x) = w? Go(r,x) Py(x,s)
This is the Fréchet (Born) kernel.

So the Born linear mapping is

5P(r,s)—/QKmP(r,x) Im(x) dx

Since Py(x,s) = Go(x —s) (for a unit impulsive source at s):

K, P(r,x) := w® Go(r,x) Py(x,s)
(x:8)
~ Go(x,s

K, P(r,x) = w? Go(r,x) Go(x, s)

Substituting the Green’s function expression:
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In 3D homogeneous space:

Go(r,x) = L etkolr=x|_ ko = “ (14)

47 — x| Vo

For a point source at s,

1

4r|x — s|

Py(x,8) = Go(x,8) = eikolx=s|, (15)

Thus:
1 eik’o(\x—r|+\x—s|)

K, P(r,x) =w @2 X — x| [x = (16)

w
47

2 1 ‘
K P(r,x) = (1) il (17)

|x —r||x — s|

K, P is often called a sensitivity kernel (or Fréchet kernel). It is not exactly the gradient
of a simple multivariate function but it is the kernel of the linearized forward map from
dm to the data 0 P. The kernel contains a geometric amplitude factor 1/(|r — x|, |x — s|)

iko(|r—z|+|z—s|

and a phase e ). The phase depends on the total path length from source s to

scatterer x to receiver r.

5 Fresnel Zones as Confocal Ellipses (equal-phase loci)

The phase of the kernel is constant when

L(x) = |x —s| 4+ |r — x| = constant. (18)

Surfaces (in 2-D cross sections: curves) of constant L are confocal ellipses with foci at s

and r. This is the definition of a confocal ellipse.

Definition (ellipse by foci): an ellipse is the locus of points x = (z,y) such that the

sum of distances to two fixed foci equals a constant (2a):

|x —s| + |x — r| = 2a.

If the foci lie at (£¢,0) (i.e. separated by (2c)) and the ellipse is centered at the origin,

the standard ellipse equation is
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Let the foci be at s = (—¢,0) and r = (¢, 0). Points satisfying

Ix —s|+ |x —r| = 2a (19)
form an ellipse with:
semi-major axis: a, (20)
semi-minor axis: b= va? — 2, (21)
focal distance: 2c. (22)

¢ is the distance from center to each focus, with 0 < ¢ < a. 2a is the constant total path

length (sum of distances to foci)

Thus the ellipse equation is

=1 (23)

Fresnel Zones:

When the phase koL (x) differs by integer multiples of 27, i.e.

Successive Fresnel zones correspond to

koL(x) = constant + 27n

ko (|x — s| + |r — x|) = constant + 27n. (24)

the points x lie on confocal ellipses with discrete values of a. These annular elliptical
regions between successive ellipses are the Fresnel zones: within the first Fresnel zone the
scattered contributions add mostly in phase at the receiver; outside they tend to cancel
more. These zones show constructive and destructive interference around the geometric

ray path.

Thus the equal-phase curves of the kernel are confocal ellipses (2-D slices) or confocal
ellipsoids (3-D) with foci at source and receiver. That is why the kernel’s significant
energy is concentrated in a “banana” or “peanut” shaped region around the geometrical

ray: the first few Fresnel zones around the ray contain most of the coherent sensitivity.



Wavepath and Raypath

B. Derivation Based on the Rytov Approximation

We can write the acoustic wave equation above again as:

— (V? + w’m(x)) P(x,w) = S(x,w).

[V? 4+ w’m(x)] P(x) =0

where m(x) = 1/c*(x) is the slowness squared, w is angular frequency, and c(x) is wave

velocity.

Rytov’s Complex Phase Representation

Rytov’s key insight is to represent the wavefield as:

P(x) = ?®%)

where ¢(x) = ¢o(x) + dp(x) is a complex phase function containing both amplitude

and phase information.

Wave Equation in Complex Phase Form

First Derivative

VP =Ve? = (Vo)e® = (Vo) P

Second Derivative

Using the product rule:

VP =V .(VP)=V-[(Vo)P]

Since P = e?:

VEP =V - [(Vo)e] = [V? + (V)?]e’

Thus:

V2P = [V2¢ + (Vo) P
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Substitute the derivatives into the wave equation

V2P + w?*mP =0

Substituting:

(V20 + (V$)* P + w’mP =0

Since P # 0, divide by P:

Vi + (Vo) +w’m =0

This is the exact wave equation in Rytov’s complex phase form.

Derivation of Perturbation Equation

Let:

m(x) = mo + dm(x)
P(x) = ¢o(x) + 59(x)

where ¢q is the background phase and d¢ is the phase perturbation.

For the background (unperturbed) medium (mg constant):

V2¢0 -+ (V¢0)2 + w2m0 = 0 (25)

For the perturbed equation:

Substitute m = mgy + dm and ¢ = ¢y + J¢ into (2):

V(g0 + 0¢) + [V (g + 60)]* + w?(mg + dm) = 0

Expand the gradient squared term:

[V (6o + 60)> = (Vo)* + 2V - Vg + (Vip)®

So the equation becomes:

10
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V2¢o + V?3¢ + (Veo)* + 2V - Vg
+ (Vé¢)? + w?mg + w?om = 0 (26)

Subtract the background equation (25) from (26):

(V2o + (Vo)? + w?mg] + V26 + 2V g - Vo + (Vi) + w?dm = 0

The terms in brackets sum to zero (from equation 25), so:

V250 + 2V - Vg + (VIg)? + w?dm = 0 (27)

This is the exact perturbation equation for Rytov’s method.

Linearization

We want to obtain a linear equation for d¢. Notice the problematic term (Vd¢)? which

is nonlinear.

Rearrange the perturbation equation:

—[wm + 2V - Voo + (Vo) + V35¢] = 0 (28)

We would like something of the form:

—[w?mg + V?|(Pyd¢) = RHS(6m, Py)

Using Py = e, let’s compute VZ(Pyd¢):

First Derivative

V(Pyog) = (VFR)op + PV

Since Py = e?, VP = (Vo) P:

V(Pyog) = Po[(Vo)dg + Vig)

11
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Second Derivative

V3 (Pydg) =V - [Po(Vodd + Vo))

Expand:

V2(Pyéo) = (VBy) - (Vodo + V) + PoV - (Vo + V)

First term: VP = (Vo) Py, so:

(VR) - (Vb + Vép) = Py[(Vo)?6¢ + Vg - Vg

Second term:

V - (Véodp + Véd) = Voo + Vo - Vi + V350

So:

V?(Pyép) = Po[(Vpo)*¢ + Vo - Vo
+ V26066 + Vo - V86 + V254

Combine terms:

V2(Podg) = By[(Vo)*0¢ + V3dd + 2V g - Vp + V256 (29)

From (27), we have:

V2356 + 2V - Vig = —[(Vg)* + wdm]

Multiply by Fy:

Py[V25¢ 4 2V oy - Vg = —Py[(VEp)* 4 w?dm)] (30)

From (29), note that:

Py[V26¢ + 2V ¢y - Vg] = V*(Pydg) — Pol(Vpo)*0¢p + Vhod ] (31)

12
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Using Background Equation for ¢,

From the background equation (25):

V2¢0 + (V¢0)2 + w2m0 =0

Multiply by Pyd¢:

Po[(Vo)? + V¢l = —w?moPydgp (32)

Substitute (31) into (30):

V2(Pod¢) — Pol (Vo) + Vo0 = — B[ (VIp)? + w’om)]

Now use (32) to replace Py[(Vg)? + V2go|de:

V2(P0(5¢) + w2m0P05¢ = —P()[(VCsQS)Z + wzdm]

Rearrange:

—[w?mg 4+ V(Pyd¢) = Py[w?dm + (V¢)?] (33)
N——

drop this

This is the exact Rytov equation.

The Rytov approximation assumes:

(Vép)? < w?dm

This is valid for smooth perturbations (disk diffractors) where d¢ varies slowly.

With this approximation:

—[w*mg + V2|(Pyd¢) ~ w?dmP, (34)

Comparison with Born Approximation

Born Form

Recall Born approximation for  P:

13
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—[w?mg + V8P =~ w?dmP,

Rytov Form

Rytov approximation:

—[w2m0 + V2](P05q§) ~ w25mP0

Connection

For weak scattering (d¢ < 1):

‘P = P00 — %099 5 Py(1 + 5¢) ‘

So:

§P = P — Py ~ Py

Thus in the weak-scattering limit, Rytov reduces to Born.

Sensitivity Kernel for Rytov

Equation (34) is:

[V2 + w2m0](P05¢) = —wzémPO

This is identical in form to the Born equation, so we can solve using Green’s functions:

Py(r)op(r) = /wZGO(r,X)ém(X)PO(X)dx

Thus:

dp(r) = /wZ%(;?)ém(x)Pg(x)dx

Sensitivity Kernel Definition

The sensitivity kernel for ¢ is:

14
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K2 (r,x) := w? GO(r];())(()I-])DO<X)

Explicit Form in 3D Homogeneous Medium

For a point source at s:
eik‘o‘x—s‘
P =G §) = ————
(%) o(x,3) 47r|x — s
eiko\r—x|

Go(r,x) = 47|r — x|
eik0|r—s\

P()(I') = Go(I‘,S) = m

Substituting:
etkolr—x| eikolx—s|
Kd) 2 Amr—x] " drx—s]|
m(r7x) =w - eikolr—s|
4m|r—s|
Simplify:
w2 6iko(|r—x\—|—|x—s\—|r—s|)

K¢ - .
(X = e T xlx = s/ =5

Physical Interpretation

Phase Factors Comparison
iko (|x—r|+|x—s|)

e Born kernel: ¢

e Rytov kernel: eto(x—rl+x—s|—[r=s|)
The Rytov kernel has phase subtracted by the direct path |r — s|, which represents

phase delay relative to unperturbed wave.

Amplitude Factors Comparison
1
e Born:
|x — r||x — s
1

e Rytov:
|x —rf|x —s[/|r — 5|
The Rytov kernel is normalized by the source-receiver distance.

15
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When to Use Each Approximation

e Born Approximation: Point scatterers, sharp boundaries, strong perturbations

e Rytov Approximation: Smooth perturbations, disk diffractors, extended scat-

terers

e Weak scattering limit: Both approximations converge

Key Summary of Equations

1. Exact wave equation in phase form:

Vi + (Vo) +w’m =0

2. Exact perturbation equation:

V2350 + 2V - Vg + (VIg)? + w?dm = 0

3. Exact Rytov equation:
—[w?mg + V2] (Pydp) = Polw?om + (Vp)?

4. Rytov approximation (assuming (Vi¢)? < w?dm):

—[w2m0 + V2](P05<;§) ~ w25mP0

5. Rytov sensitivity kernel:

w2 eiko(|l‘*X‘+|X*S‘*|l‘*S|)

Kﬁb(r,x) =

i r—xlx—s|/[r—s|

Conclusion

The Rytov approximation provides an alternative linearization scheme to the Born ap-
proximation, particularly well-suited for smooth, extended scatterers where phase
perturbations accumulate gradually along the wave path. Unlike Born which linearizes
the wavefield directly, Rytov linearizes the complex phase, making it more robust for cer-
tain types of smooth perturbations while maintaining the same mathematical structure

for inversion.

16
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C. Derivation Based on the Ray Approximation

The ray approximation is a high-frequency limit (w — o) of wave propagation where
waves can be treated as traveling along geometric rays. This is also known as geometric

optics in optics or geometric seismology in seismology.
Travel Time Definition

For a ray path I' from point A to point B, the travel time T is given by:

where ds is the arc length element along the ray, and ¢(x) is the wave velocity.

Since m(x) = 1/c*(x) is the slowness squared, we can write:

T:/jmds

Ray Path Representation Using Dirac Delta

Integral Representation

We can represent the travel time as an integral over the entire domain €2 using the Dirac

delta function:

T = / V(X) §(X — Xyay) dx
Q

where X,y (s) is the position along the ray path parameterized by arc length s.

The delta function §(x —X,,y) is a functional that picks out the ray path in the domain.

More precisely, we should write:

T = /AB\/m(Xray(s))ds :/Q\/W(SL(X—XMY) dx

where dr, is a line delta function concentrated on the ray path.

Perturbation Analysis

Background and Perturbed Quantities

Let:

e Background velocity: co(x), with mg(x) = 1/c3(x)

17
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e Perturbed velocity: ¢(x) = ¢o(x) + dc(x), with m(x) = mo(x) + dm(x)
e Background ray path: ng;(s) (ray in the background medium)
e Perturbed ray path: X,y (s) (ray in the perturbed medium)

The travel times are:

Ty = /AB \/mo(xl(«gg,(s)) ds
T= /AB A/ T Xray(S)) ds

Using Integral Representation

In delta function notation:

Toz/\/mo(x)é(x—xgg;)dx
Q

7= [ V) S = o) dx

First-Order Perturbation Analysis

Taylor Expansion of Square Root

For small perturbations dm < my:

0

om 16m 1 /om\?
\/mo—l—(Sm:\/ﬁo 1+H:\/m_0 1+4-—— = — + .-

Keeping only first-order terms:

1 ém
vVmy+ om =~ \/m0+§\/—m_0

Since /mg = 1/¢o, we can also write:

1 om 1
/Mo + om — /mg =~ ém = —§cof5m

because dm = —%(50 (from m = 1/c?).

18
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Perturbation in Travel Time

The travel time perturbation is:

0 =T-T,= /Q [\/W(S(X — Xpay) — /M0 (X) d(x — xﬁ‘;)y)} dx (35)

The Born Approximation for Ray Theory

Key Simplification

In the ray Born approximation or Fermat’s principle approximation, we make a

crucial simplification:

5(X — Xpay) ~ 0(x — x0)

ray

This means we ignore the change in ray path geometry due to the velocity pertur-

bation. This is valid when:
1. High frequency limit (w — oo): The ray is well-defined and doesn’t bend much
2. Small perturbations: dc/cy < 1
3. Smooth perturbations: The velocity field varies slowly relative to wavelength

Physically, this is Fermat’s principle: to first order, the travel time is stationary with

respect to small changes in ray path.

Applying the Approximation

With this approximation, equation (35) becomes:

~ [ [V = Vo) - %19 ax
Q

Detailed Derivation Step by Step

Start with Exact Perturbation

5T:/Q\/m(x)5( — Xyay dx—/\/ x) 0(x — xfg; dx

Apply Ray Path Approximation
§(X — Xpay) = 0(x — x9) + higher order terms

ray

Keeping only zeroth order in ray path perturbation:

19
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0T =~ /Q [\/m(x) - \/mo(x)} d(x — xﬁg;) dx

Expand Square Root

Vm(x) = V/mo(x) = /mo(x) + dm(x) — v/mo(x)

Taylor expansion:

Keep first order only:

Substitute

Express in Terms of Velocity

Since y/mg = 1/¢p, we have:

1
N
Also, from m = 1/c%, we get:
5 1 1
m=m-my=— — —
T e 2
For small perturbations ¢ = ¢y + dc:
1 1 1 1 ) 5c?
— = = = 1_2_C_|_3i2_...
2 (co+dc)?  A(l+dc/cy)? Co cd
So: 1 1 2 3
om = S5 T 3 = ——350+_4502+
2 o &
2
om ~ ——dc
=0

20
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om

But it’s cleaner to work with m directly. Using %\/TT)

Thus:

= %coém:

ray

1
0T =~ / Eco(x)ém(x) 6(x —x0) dx
Q

Sign Convention Analysis
Relationship Between dc and dm

From m = 1/c%

1 1 2
5m:m—mg——2——2%——3(5c
G G

Physical Consistency Check

Consider a velocity increase (d¢ > 0):

e Then 0m < 0 (slowness squared decreases)

(36)

e Travel time should decrease (67 < 0) since waves travel faster

In equation (5):
e If ¢ > 0, then ém < 0
e So %coém <0

e Therefore 67 < 0 (travel time decreases) v/

Sensitivity Kernel Definition

The sensitivity kernel K7~ (x) is defined such that:
0T = / KT (x)om(x) dx
0
From equation (36) (with corrected sign):

0T ~ / %co(x)ém(x) o(x —x9) dx
0

Therefore:

ray

KI(x) = %CO(X)é(X —x)

21
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Alternative Derivation Using Fermat’s Principle

Functional Derivative Approach

Travel time functional:

T[m] :/A vm(x(s))ds

where x(s) is the ray path, which itself depends on m.

By Fermat’s principle, the ray path minimizes T'. For a first-order perturbation:

0T = 5Tdirect + 5Tray

where:
® 0T y4irect comes from changing m along the fixed path
e 01, comes from changing the path

But by Fermat’s principle, to first order 67;,, = 0 (stationarity condition). So:

B
5Tz/ ———omds =
A

/ ;&n(x)
2y/my a 2y/mo(x)
Since /mg = 1/c¢y:

0T ~ / %co(x)ém(x) 6(x —x9) dx
Q

ray

Physical Interpretation

Kernel Structure

The ray sensitivity kernel is:

ray

K (%) = Jeo(x)ax — x2)

This is infinitely thin - it’s only non-zero exactly on the geometric ray. This is the

high-frequency limit where waves have no width.

Comparison with Finite-Frequency Kernels

For finite frequency, the sensitivity kernel has finite width (Fresnel zone). As w — oo:

22
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e Finite-frequency kernel: K,,(x) has width ~ v/ AL (Fresnel zone)
e Ray kernel: K (x) collapses to a line (delta function)

The ray kernel is the w — oo limit of the finite-frequency kernel.

Travel Time Sensitivity

The kernel tells us:
e Where a velocity change affects travel time: only along the ray path
e How much it affects travel time: proportional to cy(x)/2

e Higher sensitivity where background velocity is higher

Connection to Other Representations

Sensitivity to Velocity c

If we want sensitivity to ¢ rather than m:

Since dm ~ —6%50:
0

5T ~ /Q %co(x) (—ﬁ&(x)) 5(x — x(9) dx
= | oetel)ax = x) dx

So the velocity sensitivity kernel is:

KI'(x)=— 5(x —x0)

ray

Sensitivity to Slowness s = 1/c

Slowness s = 1/c = \/m, so §s = §(y/m) & 5=0m = Lom.

2./mo
Then:
0T ~ /Q(Ss(x)é(x — Xl(rgg,) dx
So:

KT(x) = 6(x —x©)

Tay

This makes sense: travel time is simply integral of slowness along path.

23
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Summary of Key Results

For the ray approximation (w — 00):

0T ~ %/ co(x)dm(x) §(x — XES&) dx
Q

Sensitivity kernel for m:

ray

Kl (x) = %CO(X)(;(X — X(O))

Important Notes
1. High-frequency limit: Valid when w — oo, wavelength A — 0
2. Thin kernel: Sensitivity only on the geometric ray path

3. Fermat’s principle: Ray path perturbation contribution is second order

Applications
e Seismic tomography (ray-based)
e Geophysical inversion
e Medical ultrasound tomography
e Any high-frequency wave propagation problem

The ray approximation provides the simplest possible sensitivity kernel and forms the ba-
sis for many tomographic methods, though finite-frequency kernels are needed for higher

resolution.

24



	01d597901269f0c7e67542c2583331b7faaf2d0cc03d749031c85f049d93b67e.pdf
	Frequency-Domain Helmholtz Equation
	Derivation of Perturbation Equation
	Born Approximation and Integral Solution  (Lippmann-Schwinger)
	Wavepath Sensitivity Kernel  KmP 
	Fresnel Zones as Confocal Ellipses (equal-phase loci)


