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1. – General Wave Equation

The 3D equations of motion for an isotropic linear-elastic medium can be written as:

ρ
∂2ux
∂t2

=
∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

+ fx

ρ
∂2uy
∂t2

=
∂σyx
∂x

+
∂σyy
∂y

+
∂σyz
∂z

+ fy

ρ
∂2uz
∂t2

=
∂σzx
∂x

+
∂σzy
∂y

+
∂σzz
∂z

+ fz (1)

The tensor of elastic moduli for an isotropic medium is given as:
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
=



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ
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2εxy
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Free Surface Rayleigh Wave

σxx = λ(ϵxx + ϵyy + ϵzz) + 2µϵxx

σyy = λ(ϵxx + ϵyy + ϵzz) + 2µϵyy

σzz = λ(ϵxx + ϵyy + ϵzz) + 2µϵzz

σxy = 2µϵxy

σyz = 2µϵyz

σzx = 2µϵzx

ϵxx =
1

2

(
∂ux
∂x

+
∂ux
∂x

)
=
∂ux
∂x

ϵyz =
1

2

(
∂uy
∂z

+
∂uz
∂y

)
ϵyy =

1

2

(
∂uy
∂y

+
∂uy
∂y

)
=
∂uy
∂y

ϵxz =
1

2

(
∂ux
∂z

+
∂uz
∂x

)
ϵzz =

1

2

(
∂uz
∂z

+
∂uz
∂z

)
=
∂uz
∂z

ϵxy =
1

2

(
∂ux
∂y

+
∂uy
∂x

)

σij = cijklϵkl +Mij

Where:

• ui the displacement [m]

• σij the stress tensor [Pa]

• Mij the moment tensor [Pa]

• fi the source term [N/m3]

• ϵij the strain tensor []

• cijkl the elastic tensor [Pa]

• ρ the density [kg/m3]

Rayleigh-type surface waves:

A Rayleigh wave is typically analyzed in a 2D plane because it propagates along a surface

(the x-direction) and varies with depth (the z-direction), with no variation in the y-direction

(out-of-plane). This is called plane strain conditions.
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Free Surface Rayleigh Wave

For Rayleigh-type surface waves propagating in the x–z plane (plane strain), we assume:

∂

∂y
= 0, v = uy = 0.

So:

ρ
∂2ux
∂t2

=
∂σxx
∂x

+
∂σxz
∂z

+ fx

ρ
∂2uz
∂t2

=
∂σzx
∂x

+
∂σzz
∂z

+ fz

σxx = (λ+ 2µ)
∂ux
∂x

+ λ
∂uz
∂z

σzz = λ
∂ux
∂x

+ (λ+ 2µ)
∂uz
∂z

σxz = µ

(
∂ux
∂z

+
∂uz
∂x

)
(2)

Rayleigh waves are surface waves that propagate along a boundary and their energy decays

exponentially with depth. They propagate along the free surface of an elastic half-space (e.g.,

the Earth’s surface). It is a key component of seismic waves generated by earthquakes.

Key Characteristics:

• Evanescent Nature: The wave’s energy decreases exponentially with depth. It is

“trapped” near the surface.

• Elliptical Particle Motion: Particles near the surface move in a retrograde ellipse

(a vertical ellipse where the motion at the top is opposite to the direction of wave

propagation). As depth increases, the ellipse becomes prograde and flattens out.

• Non-Dispersive (in a homogeneous half-space): Its velocity is constant and does

not depend on frequency. Dispersion only occurs in layered media.

• Slower than Body Waves: Its velocity c is slower than both the shear wave velocity

β and the compressional wave velocity α.
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Free Surface Rayleigh Wave

2. – Helmholtz Decomposition

The Helmholtz Decomposition states that any sufficiently smooth vector field u can be

decomposed into a curl-free component and a divergence-free component:

u = up + us = ∇ϕ+∇×Ψ (3)

where:

• ϕ is a scalar potential

• Ψ is a vector potential

• up = ∇ϕ is curl-free (∇× up = 0)

• us = ∇×Ψ is divergence-free (∇ · us = 0)

Decoupling the Wave Equation

We now substitute the decomposition (3) into the simplified wave equation 4.

ρü = (λ+ 2µ)∇(∇ · u) − µ∇× (∇× u) (4)

Left-Hand Side (Time Derivatives)

ρü = ρ
∂2

∂t2
(∇ϕ+∇×Ψ) = ρ∇ϕ̈+ ρ∇× Ψ̈ (5)

Right-Hand Side (Spatial Derivatives)

(λ+ 2µ)∇(∇ · u) − µ∇× (∇× u)

∇ · u = ∇ · (∇ϕ+∇×Ψ) = ∇ · (∇ϕ) +∇ · (∇×Ψ) = ∇2ϕ+ 0 (6)

∇× u = ∇× (∇ϕ+∇×Ψ) = ∇× (∇ϕ) +∇× (∇×Ψ) = 0 +∇× (∇×Ψ) (7)
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Free Surface Rayleigh Wave

Substituting (6) and (7) into the right-hand side of equation 1:

RHS = (λ+ 2µ)∇(∇2ϕ)− µ∇× [∇× (∇×Ψ)]

= (λ+ 2µ)∇(∇2ϕ)− µ∇× [∇(∇ ·Ψ)−∇2Ψ] (8)

We can choose the Coulomb gauge (∇ ·Ψ = 0), which simplifies (8) to:

RHS = (λ+ 2µ)∇(∇2ϕ) + µ∇× (∇2Ψ) (9)

The Final Decoupled Form

Equating the left-hand side (5) with the right-hand side (9):

∇
[
(λ+ 2µ)∇2ϕ− ρϕ̈

]
+∇×

[
µ∇2Ψ− ρΨ̈

]
= 0 (10)

For this sum of a gradient and a curl to be zero everywhere, the terms inside the brackets

must each be zero (or at most equal to a constant, which can be ignored for wave solutions):

∇
[
(λ+ 2µ)∇2ϕ− ρϕ̈

]
= 0 (11)

∇×
[
µ∇2Ψ− ρΨ̈

]
= 0 (12)

This leads to two independent, decoupled wave equations.

Final Wave Equations and Speeds

From (11) and (12), we obtain:

P-Wave Equation (Compressional)

1

α2
ϕ̈ = ∇2ϕ, where α =

√
λ+ 2µ

ρ
(13)

• α is the P-wave speed.

• Derived from the scalar potential ϕ.

• Particle motion is parallel to the direction of propagation (up = ∇ϕ).

S-Wave Equation (Shear)

1

β2
Ψ̈ = ∇2Ψ, where β =

√
µ

ρ
(14)
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Free Surface Rayleigh Wave

• β is the S-wave speed.

• Derived from the vector potential Ψ.

• Particle motion is perpendicular to the direction of propagation (us = ∇×Ψ).

Summary

The Helmholtz decomposition successfully decouples the elastic wave equation into two

independent wave types:

• P-waves (faster, α > β, compressional) governed by the scalar potential ϕ.

• S-waves (slower, shear) governed by the vector potential Ψ.

This derivation elegantly explains the fundamental separation of body waves observed in

seismology.

3. – Displacement Fields

Computing Displacements at Interface from Potentials

To handle the coupled P-SV system, we use scalar potential ϕ for P-waves and vector potential

ψ for SV-waves, where the displacement u is:

u = ∇ϕ+∇× ψ

P-waves (dilatational):

P-waves are irrotational (no rotation) and can be described by a scalar potential ϕ such

that:

uP = ∇ϕ (15)

In component form:

ux =
∂ϕ

∂x
, uz =

∂ϕ

∂z
(16)

No uy component because we are considering 2D. ∂
∂y

= 0, we are dealing with a 2D problem

in x− z plane (plane strain)
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Free Surface Rayleigh Wave

Take Note:

Why this works

Wave equation for P-waves

∇2ϕ =
1

α2

∂2ϕ

∂t2
(17)

Checking irrotationality

∇× uP = ∇× (∇ϕ) = 0 (18)

This is always true because the curl of a gradient is identically zero.

Dilatation (volume change)

∇ · uP = ∇ · (∇ϕ) = ∇2ϕ ̸= 0 (19)

SV-waves (shear, vertical polarization):

SV-waves are solenoidal (divergence-free) and can be described by a vector potential. For

2D motion in the x-z plane, we use:

uSV = ∇× (0, ψ, 0) = ∇× (ψŷ) (20)

For 2D P-SV case in x-z plane, the vector potential has only a y-component: ψ = (0, ψ, 0).

Detailed derivation

The curl in Cartesian coordinates is:

∇×A =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣∣ (21)

For A = (0, ψ, 0):

∇× (0, ψ, 0) =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

0 ψ 0

∣∣∣∣∣∣∣ (22)
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Free Surface Rayleigh Wave

Computing each component:

x-component:

(∇×A)x =
∂Az

∂y
− ∂Ay

∂z
=
∂0

∂y
− ∂ψ

∂z
= −∂ψ

∂z
(23)

For 2D problems where nothing depends on y (∂/∂y = 0):

Standard curl calculation:

(∇×A)x =
∂Az

∂y
− ∂Ay

∂z
= −∂ψ

∂z
(24)

(∇×A)y =
∂Ax

∂z
− ∂Az

∂x
= 0 (25)

(∇×A)z =
∂Ay

∂x
− ∂Ax

∂y
=
∂ψ

∂x
(26)

ux = −∂ψ
∂z
, uz =

∂ψ

∂x
(27)

So:

∇×ψ =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

0 ψ 0

∣∣∣∣∣∣∣ = − x̂
∂ψ

∂z
+ ẑ

∂ψ

∂x
(28)

Therefore:

ux = − ∂ψ

∂z
, uz = +

∂ψ

∂x
(29)
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Free Surface Rayleigh Wave

Why this works

Wave equation for SV-waves

∇2ψ =
1

β2

∂2ψ

∂t2
(30)

Checking solenoidality (divergence-free)

∇ · uSV =
∂ux
∂x

+
∂uz
∂z

=
∂2ψ

∂x∂z
− ∂2ψ

∂z∂x
= 0 (31)

SV-waves involve no volume change.

Rotation (vorticity)

∇× uSV = ∇× (∇× (0, ψ, 0)) ̸= 0 (32)

SV-waves involve rotation/shear.

So, from equation 10 and 20:

Horizontal displacement:

ux =
∂ϕ

∂x
− ∂ψ

∂z
(33)

Vertical displacement:

uz =
∂ϕ

∂z
+
∂ψ

∂x
(34)

In matrix form, the continuity of displacement at the interface becomes:

(
ux

uz

)
=

(
∂x −∂z
∂z ∂x

)(
ϕ

ψ

)
(35)
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Free Surface Rayleigh Wave

4. – Proposed Wave Solutions

We are looking for a wave propagating in the x-direction with velocity c, and decaying in the

z-direction. This means the amplitude of the wave decays with depth. The general solutions

for the potentials are:

ϕ(x, z, t) = Aei(ωt−kxx−kzαz)

ψ(x, z, t) = Bei(ωt−kxx−kzβz)

Where:

• ω is the angular frequency.

• kx is the horizontal wavenumber (kx = ω/c).

• kzα and kzβ are the vertical wavenumbers for the P and S components, respectively.

• A and B are amplitudes to be determined.

The Evanescent (Decaying) Condition

For the wave to be a surface wave, it must decay with depth (z → +∞). This means

the solution for F (z) must be exponential decay, not oscillation. This requires the vertical

wavenumbers to be imaginary. We define them as:

kzα = −ikxrα, kzβ = −ikxrβ

where rα and rβ are real, positive numbers that ensure exponential decay: e−kxrαz.

Such that:

ϕ(x, z, t) = Aei(−kzαz)ei(ωt−kxx) = Ae−kxrαzei(ωt−kxx)

ψ(x, z, t) = Bei(−kzβz)ei(ωt−kxx) = Be−kxrβzei(ωt−kxx)

Substitute each ansatz into its wave equation 17 and 30 to get the dispersion relations for

the vertical wavenumbers.

∇2ϕ =
1

α2

∂2ϕ

∂t2
(36)

∇2ψ =
1

β2

∂2ψ

∂t2
(37)
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Free Surface Rayleigh Wave

Given:

ϕ(x, z, t) = Ae−kxrαzei(ωt−kxx), ψ(x, z, t) = Be−kxrβzei(ωt−kxx)

Substitute into

∇2ψ =
1

β2

∂2ψ

∂t2
, ∇2ϕ =

1

α2

∂2ϕ

∂t2
.

Assuming no y-dependence, we have ∇2 = ∂2

∂x2 +
∂2

∂z2
.

For ψ(x, z, t):

ψ(x, z, t) = Be−kxrβzei(ωt−kxx).

Compute derivatives:

∂2ψ

∂x2
= (−k2x)ψ,

∂2ψ

∂z2
= (k2xr

2
β)ψ.

Thus,

∇2ψ = k2x(r
2
β − 1)ψ

Time derivative:

∂2ψ

∂t2
= (iω)2ψ = −ω2ψ.

Substitute into the wave equation:

k2x(r
2
β − 1)ψ = −ω

2

β2
ψ.

Cancel ψ and rearrange:

r2β = 1− ω2

β2k2x

For ϕ(x, z, t):

ϕ(x, z, t) = Ae−kxrαzei(ωt−kxx).

Similarly,
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Free Surface Rayleigh Wave

∇2ϕ = k2x(r
2
α − 1)ϕ,

∂2ϕ

∂t2
= −ω2ϕ.

Substitute into the corresponding equation:

k2x(r
2
α − 1)ϕ = −ω

2

α2
ϕ.

Simplifying:

r2α = 1− ω2

α2k2x

Therefore,

r2α = 1− ω2

α2k2x
, r2β = 1− ω2

β2k2x

Since: kx = ω/c, k2x = ω2/c2

r2α = 1− c2

α2
, r2β = 1− c2

β2

Remember:

kzα = −ikxrα, kzβ = −ikxrβ

rα =
ikzα
kx

, rβ =
ikzβ
kx

kzα = −ikx

√
1− c2

α2
, kzβ = −ikx

√
1− c2

β2

Compute Displacement ux, uz

Given potentials:

ϕ(x, z, t) = Ae−kxrαzei(ωt−kxx), ψ(x, z, t) = Be−kxrβzei(ωt−kxx).

Horizontal displacement:
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Free Surface Rayleigh Wave

ux =
∂ϕ

∂x
− ∂ψ

∂z
.

Compute each term:

∂ϕ

∂x
= −ikxAe−kxrαzei(ωt−kxx),

∂ψ

∂z
= −kxrβBe−kxrβzei(ωt−kxx).

Therefore,

ux =
∂ϕ

∂x
− ∂ψ

∂z
=
(
−ikxAe−kxrαz + kxrβBe

−kxrβz
)
ei(ωt−kxx).

Simplify:

ux = kx
(
−iAe−kxrαz + rβBe

−kxrβz
)
ei(ωt−kxx).

Vertical displacement:

uz =
∂ϕ

∂z
+
∂ψ

∂x
.

Compute each term:

∂ϕ

∂z
= −kxrαAe−kxrαzei(ωt−kxx),

∂ψ

∂x
= −ikxBe−kxrβzei(ωt−kxx)

Hence,

uz =
(
−kxrαAe−kxrαz − ikxBe

−kxrβz
)
ei(ωt−kxx)

Simplify:

uz = −kx
(
rαAe

−kxrαz + iBe−kxrβz
)
ei(ωt−kxx)

Final Results:

ux = kx
(
−iAe−kxrαz + rβBe

−kxrβz
)
ei(ωt−kxx)

uz = −kx
(
rαAe

−kxrαz + iBe−kxrβz
)
ei(ωt−kxx)

Stress components and free-surface boundary conditions

The free surface at z = 0 has zero stress:

σzz(x, 0, t) = 0 and σzx(x, 0, t) = 0
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Free Surface Rayleigh Wave

(Note: σxx is sometimes used, but for an isotropic medium, the vanishing of σzx and σzz is

the standard and sufficient condition).

We need the stress-strain and strain-displacement relations:

• σzz = λ(ϵxx + ϵzz) + 2µϵzz

• σzx = 2µϵzx

• ϵxx = ∂xux, ϵzz = ∂zuz, ϵzx = 1
2
(∂zux + ∂xuz)

σxx = (λ+ 2µ)
∂ux
∂x

+ λ
∂uz
∂z

σzz = λ
∂ux
∂x

+ (λ+ 2µ)
∂uz
∂z

σxz = µ

(
∂ux
∂z

+
∂uz
∂x

)
(38)

We begin with the definitions and solutions:

Displacements from Potentials

ux = ∂xϕ− ∂zψ

uz = ∂zϕ+ ∂xψ

Proposed Solutions

ϕ = Aei(ωt−kxx−kzαz) = Aei(ωt−kxx)e−ikzαz

ψ = Bei(ωt−kxx−kzβz) = Bei(ωt−kxx)e−ikzβz

For surface waves, the vertical wavenumbers are imaginary to ensure decay:

kzα = −ikxrα, kzβ = −ikxrβ

with

rα =
√
1− c2/α2, rβ =

√
1− c2/β2

Thus, the potentials become:

ϕ = Aei(ωt−kxx)e−kxrαz

ψ = Bei(ωt−kxx)e−kxrβz
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Free Surface Rayleigh Wave

The term ei(ωt−kxx) is common to all subsequent expressions and will be omitted for clarity

during the differentiation process.

Compute the Displacement Components ux and uz

Let’s compute the derivatives of the potentials.

For ϕ = Ae−kxrαze−ikxx:

∂xϕ = −ikxϕ

∂zϕ = −kxrαϕ

For ψ = Be−kxrβze−ikxx:

∂xψ = −ikxψ

∂zψ = −kxrβψ

Now substitute into the displacement equations:

ux Component:

ux = ∂xϕ− ∂zψ = (−ikxϕ)− (−kxrβψ)

= −ikxϕ+ kxrβψ

⇒ ux = kx(−iAe−kxrαz + rβBe
−kxrβz)e−ikxx

uz Component:

uz = ∂zϕ+ ∂xψ = (−kxrαϕ) + (−ikxψ)

= −kxrαϕ− ikxψ

⇒ uz = kx(−rαAe−kxrαz − iBe−kxrβz)e−ikxx

Compute the Strain Components ϵxx, ϵzz, ϵzx

We now differentiate the displacements. Note that for our solutions:

∂x ≡ −ikx

Strain ϵxx = ∂xux:
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Free Surface Rayleigh Wave

ϵxx = ∂xux = −ikxux
= −ikx

[
kx(−iAe−kxrαz + rβBe

−kxrβz)
]

= k2x
[
(−i)(−i)Ae−kxrαz + (−i)rβBe−kxrβz

]
= k2x

[
(−1)Ae−kxrαz − irβBe

−kxrβz
]

ϵxx = −k2xAe−kxrαz − ik2xrβBe
−kxrβz

Strain ϵzz = ∂zuz:

uz = kx(−rαAe−kxrαz − iBe−kxrβz)e−ikxx

∂zuz = kx
[
−rαA(−kxrα)e−kxrαz − iB(−kxrβ)e−kxrβz

]
e−ikxx

= k2x
[
r2αAe

−kxrαz + irβBe
−kxrβz

]
e−ikxx

ϵzz = k2xr
2
αAe

−kxrαz + ik2xrβBe
−kxrβz

Recall r2α = 1− c2/α2.

Strain ϵzx = 1
2
(∂zux + ∂xuz):

First, ∂zux:

ux = kx(−iAe−kxrαz + rβBe
−kxrβz)e−ikxx

∂zux = kx
[
−iA(−kxrα)e−kxrαz + rβB(−kxrβ)e−kxrβz

]
e−ikxx

= k2x
[
irαAe

−kxrαz − r2βBe
−kxrβz

]
e−ikxx

Second, ∂xuz:

uz = kx(−rαAe−kxrαz − iBe−kxrβz)e−ikxx

∂xuz = −ikxuz = −ikx
[
kx(−rαAe−kxrαz − iBe−kxrβz)

]
= k2x

[
irαAe

−kxrαz −Be−kxrβz
]
e−ikxx

Now add them for ϵzx:
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Free Surface Rayleigh Wave

∂zux + ∂xuz = k2x [irαA+ irαA] e
−kxrαz + k2x

[
−r2βB −B

]
e−kxrβz

= k2x
[
2irαAe

−kxrαz − (r2β + 1)Be−kxrβz
]

Therefore,

ϵzx =
1

2
(∂zux + ∂xuz)

=
k2x
2

[
2irαAe

−kxrαz − (r2β + 1)Be−kxrβz
]

ϵzx = ik2xrαAe
−kxrαz − k2x

2
(r2β + 1)Be−kxrβz

Recall r2β = 1− c2/β2, so r2β + 1 = 2− c2/β2.

Compute the Stress Components σzz and σzx

Stress σzz = λ(ϵxx + ϵzz) + 2µϵzz = λϵxx + (λ+ 2µ)ϵzz

First, find ϵxx + ϵzz:

ϵxx + ϵzz =
[
−k2xAe−kxrαz − ik2xrβBe

−kxrβz
]

+
[
k2xr

2
αAe

−kxrαz + ik2xrβBe
−kxrβz

]
= k2xA(r

2
α − 1)e−kxrαz

But r2α − 1 = (1− c2/α2)− 1 = −c2/α2, so:

ϵxx + ϵzz = −k2xA(c2/α2)e−kxrαz

Now compute σzz:

σzz = λ(ϵxx + ϵzz) + 2µϵzz

= λ
[
−k2xA(c2/α2)e−kxrαz

]
+ 2µ

[
k2xr

2
αAe

−kxrαz + ik2xrβBe
−kxrβz

]
= k2xA

[
−λ(c2/α2) + 2µr2α

]
e−kxrαz + 2µ

[
ik2xrβBe

−kxrβz
]

Simplify the coefficient of A using:
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Free Surface Rayleigh Wave

λ = ρα2 − 2µ

r2α = 1− c2/α2

Then:

− λ(c2/α2) + 2µr2α

= −(ρα2 − 2µ)(c2/α2) + 2µ(1− c2/α2)

= −ρc2 + 2µ(c2/α2) + 2µ− 2µ(c2/α2)

= −ρc2 + 2µ

Using ρ = µ/β2, we get:

−ρc2 + 2µ = − µ

β2
c2 + 2µ = µ

(
2− c2

β2

)
Therefore:

σzz = µk2x

[(
2− c2

β2

)
Ae−kxrαz + 2irβBe

−kxrβz

]
Stress σzx = 2µϵzx:

σzx = 2µ

[
ik2xrαAe

−kxrαz − k2x
2
(r2β + 1)Be−kxrβz

]
= 2µk2x

[
irαAe

−kxrαz − 1

2
(2− c2/β2)Be−kxrβz

]

σzx = 2µk2x

[
irαAe

−kxrαz − 1

2

(
2− c2

β2

)
Be−kxrβz

]

Apply Boundary Conditions at z = 0

At z = 0, e−kxrαz = e−kxrβz = 1.

BC 1: σzz(z = 0) = 0
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µk2x

[(
2− c2

β2

)
A+ 2irβB

]
= 0(

2− c2

β2

)
A+ 2irβB = 0 (39)

BC 2: σzx(z = 0) = 0

2µk2x

[
irαA− 1

2

(
2− c2

β2

)
B

]
= 0

irαA− 1

2

(
2− c2

β2

)
B = 0

2irαA−
(
2− c2

β2

)
B = 0 (40)

Write the Homogeneous System

We have Eq. 39 and Eq. 40:
(
2− c2

β2

)
A+ 2i

√
1− c2

β2
B = 0

2i

√
1− c2

α2
A−

(
2− c2

β2

)
B = 0

In matrix form: 
(
2− c2

β2

)
2i

√
1− c2

β2

2i

√
1− c2

α2
−
(
2− c2

β2

)

(
A

B

)
=

(
0

0

)

This is equivalent to the system in the notes:(
2
√

1− c2/α2 −(2− c2/β2)

(2− c2/β2) 2
√

1− c2/β2

)(
A

B

)
=

(
0

0

)
which is obtained by multiplying the first row by −i and the second row by i, then swapping

rows. This is a mathematically equivalent transformation that makes the matrix look

symmetric and avoids explicit imaginary units, as the amplitudes A and B can absorb phase

factors.
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Note: The signs in the matrix can vary slightly depending on the sign convention used for

the vertical wavenumbers, but the final characteristic equation is always the same

The Characteristic (Rayleigh) Equation

For a non-trivial solution (A,B) ̸= (0, 0), the determinant of the coefficient matrix must be

zero: (
2

√
1− c2

α2

)(
2

√
1− c2

β2

)
+ (2− c2

β2
)2 = 0

This is the Rayleigh Equation. It is more commonly written by squaring both sides to

eliminate the square roots (which introduces extraneous roots that must be checked):

(2− c2

β2
)2 = 4

√
1− c2

α2

√
1− c2

β2

Squaring both sides gives the polynomial form:(
2− c2

β2

)4

= 16

(
1− c2

α2

)(
1− c2

β2

)
(41)

Solving for the Rayleigh Wave Velocity c

This equation has multiple solutions for c, but we are only interested in the physical one

where c < β < α (so the wave is slower than body waves and the vertical wavenumbers are

imaginary, ensuring decay).

For a Poisson solid, a common approximation in geophysics where λ = µ (which implies

ν = 0.25 and α2/β2 = 3), the equation simplifies. The solution is:

c ≈ 0.9194β

This velocity is independent of frequency, meaning the homogeneous half-space model is

non-dispersive.

When is it dispersive? Rayleigh waves become dispersive when propagating in a layered

medium, such as the Earth’s crust over a mantle. Different frequencies then sample different

depths, and thus “feel” different average material properties, leading to a frequency-dependent

velocity c(ω).
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Solve for a Poisson Solid from Equation 41

A Poisson solid is defined by λ = µ, which leads to a specific relationship between P-wave

and S-wave velocities:

α2 =
λ+ 2µ

ρ
=
µ+ 2µ

ρ
=

3µ

ρ

β2 =
µ

ρ

⇒ α2

β2
= 3 or α2 = 3β2

Let’s substitute γ =
c2

β2
and

c2

α2
=

c2

3β2
=
γ

3
into the squared characteristic equation (Eq.

41):

(2− γ)4 = 16
(
1− γ

3

)
(1− γ)

This is an equation in one variable, γ. Let’s simplify and solve it.

(2− γ)4 = 16
(
1− γ

3

)
(1− γ)

(2− γ)4 = 16

(
3− γ

3

)
(1− γ)

(2− γ)4 =
16

3
(3− γ)(1− γ)

Multiply both sides by 3:

3(2− γ)4 = 16(3− γ)(1− γ)

Now we expand both sides. First, expand (3− γ)(1− γ):

(3− γ)(1− γ) = 3− 3γ − γ + γ2 = 3− 4γ + γ2

So the equation becomes:

3(2− γ)4 = 16(3− 4γ + γ2) (42)

Now, let p = 2− γ, so γ = 2− p. Substituting is messy, so let’s expand (2− γ)4:
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(2− γ)4 = γ4 − 8γ3 + 24γ2 − 32γ + 16

Substitute back into Eq. 42:

3(γ4 − 8γ3 + 24γ2 − 32γ + 16) = 16(γ2 − 4γ + 3)

3γ4 − 24γ3 + 72γ2 − 96γ + 48 = 16γ2 − 64γ + 48

Bring all terms to one side:

3γ4 − 24γ3 + 72γ2 − 96γ + 48− 16γ2 + 64γ − 48 = 0

3γ4 − 24γ3 + (72− 16)γ2 + (−96 + 64)γ + (48− 48) = 0

3γ4 − 24γ3 + 56γ2 − 32γ = 0

Factor out γ:

γ(3γ3 − 24γ2 + 56γ − 32) = 0

One solution is γ = 0, which corresponds to c = 0 (no wave). We are interested in the roots

of the cubic:

3γ3 − 24γ2 + 56γ − 32 = 0

We can try simple rational roots. Let’s try γ = 2:

3(8)− 24(4) + 56(2)− 32 = 24− 96 + 112− 32 = 8 (Not zero)

Let’s try γ = 4:

3(64)− 24(16) + 56(4)− 32 = 192− 384 + 224− 32 = 0 (Yes!)

So, γ = 4 is a root. Let’s perform polynomial division. Divide the cubic by (γ − 4).

The quotient is:

3γ2 − 12γ + 8
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So the factored cubic is:

(γ − 4)(3γ2 − 12γ + 8) = 0

Now solve the quadratic 3γ2 − 12γ + 8 = 0:

γ =
12±

√
144− 96

6
=

12±
√
48

6
=

12± 4
√
3

6
= 2± 2

√
3

3

γ ≈ 2± 1.155 = 3.155, 0.845

So our four potential solutions for γ = c2/β2 are:

1. γ1 = 0 ⇒ c = 0

2. γ2 = 4 ⇒ c = 2β

3. γ3 ≈ 3.155 ⇒ c ≈ 1.776β

4. γ4 ≈ 0.845 ⇒ c ≈ 0.919β

Select the Physically Valid Solution

Recall the decay condition: for the wave to be a surface wave (evanescent), we require r2α > 0

and r2β > 0, meaning:

r2α = 1− c2

α2
> 0 and r2β = 1− c2

β2
> 0

Since α > β, the stricter condition is c < β. This implies γ = c2/β2 < 1.

Let’s check our solutions:

• γ1 = 0: c = 0. Trivial, no wave.

• γ2 = 4: c = 2β. Violates c < β.

• γ3 ≈ 3.155: c ≈ 1.776β. Violates c < β.

• γ4 ≈ 0.845: c ≈ 0.919β. Satisfies c < β.

Therefore, the only physically valid solution for a Poisson solid is:

c2

β2
≈ 0.845 ⇒ c ≈

√
0.845β ≈ 0.919β

This matches the value given in the notes.
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Final Summary

The homogeneous system has a non-trivial solution only when the Rayleigh wave velocity c

satisfies the characteristic equation. For a Poisson solid (α/β =
√
3), the valid solution is:

c ≈ 0.919β

This confirms the existence of a Rayleigh wave that propagates more slowly than the shear

wave and decays exponentially with depth.

Rayleigh wave motion (Poisson solid)(
ux

uz

)
= Akx

(
sin(ωt− kxx)

cos(ωt− kxx)

)(
1 −0.58

−0.85 1.47

)(
e−0.85kxz

e−0.39kxz

)

(a) Rayleigh Motion (b) Halfspace Rayleigh Wave

Figure 1: Models used in the homogeneous case
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Explanation of the Wave Motion Diagram

The final part of the notes describes the particle motion.

• Depth Decay: The terms e−0.85kxz and e−0.39kxz show that both horizontal (ux) and

vertical (uz) displacements decay exponentially with depth. The S-wave component

(associated with ψ and the 0.39 term) decays more slowly than the P-wave component

(associated with ϕ and the 0.85 term).

• Elliptical Polarization: The matrix and the phase relationship between the sine and

cosine terms indicate that the motion is elliptical. The particle path over one cycle

traces an ellipse.

• Retrograde Motion: At the surface (z = 0), the ellipse is retrograde. This means

that as the wave passes, a particle moves in a vertical ellipse in the direction opposite

to the wave propagation.

• Phase Shifts with Depth: The diagrams at different times (t = T/2, T/4, etc.) show

how the particle at a fixed depth moves through its elliptical path over time. The

relative amplitudes and phases of ux and uz change with depth, which can cause the

ellipse to reverse its sense of rotation (become prograde) at a certain depth.

In summary, the notes provide a compact derivation of the fundamental properties of Rayleigh

waves: their existence condition (the Rayleigh equation), their non-dispersive nature in a

simple model, and their characteristic elliptical, decaying motion.
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