Surface Wave (Rayleigh Wave) in

Homogeneous Half Space

October, 2025

1. — General Wave Equation

The 3D equations of motion for an isotropic linear-elastic medium can be written as:

82% 8“; ax act:z
=T T e p

PPorr = "ax " oy | o2
O®u, 0oy, 0oy, 0oy,
Por = or oy T os
Pu, 0o, 0oy 00,

pr— 1
o " ar oy T an (1)

+ fy

The tensor of elastic moduli for an isotropic medium is given as:
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Free Surface Rayleigh Wave
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Where:

e u; the displacement |[m]

0,j the stress tensor [Pa]
e M;; the moment tensor [Pa]

fi the source term [N/m?]

€;; the strain tensor ||

cijiu the elastic tensor [Pa]

p the density [kg/m?]

Rayleigh-type surface waves:

A Rayleigh wave is typically analyzed in a 2D plane because it propagates along a surface
(the z-direction) and varies with depth (the z-direction), with no variation in the y-direction

(out-of-plane). This is called plane strain conditions.
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Free Surface Rayleigh Wave

For Rayleigh-type surface waves propagating in the z—z plane (plane strain), we assume:

So:

o2 = or o U

o = ()\—G—Qp)a;; +>\%ZZ

0. = A%Qf; TN +2 )a;;

o, = ﬂ(ag‘; ; %“) )

Rayleigh waves are surface waves that propagate along a boundary and their energy decays
exponentially with depth. They propagate along the free surface of an elastic half-space (e.g.,

the Earth’s surface). It is a key component of seismic waves generated by earthquakes.

Key Characteristics:

e Evanescent Nature: The wave’s energy decreases exponentially with depth. It is

“trapped” near the surface.

¢ Elliptical Particle Motion: Particles near the surface move in a retrograde ellipse
(a vertical ellipse where the motion at the top is opposite to the direction of wave

propagation). As depth increases, the ellipse becomes prograde and flattens out.

e Non-Dispersive (in a homogeneous half-space): Its velocity is constant and does

not depend on frequency. Dispersion only occurs in layered media.

e Slower than Body Waves: Its velocity c is slower than both the shear wave velocity

[ and the compressional wave velocity a.



Free Surface Rayleigh Wave

2. — Helmholtz Decomposition

The Helmholtz Decomposition states that any sufficiently smooth vector field u can be

decomposed into a curl-free component and a divergence-free component:
u=u,+u,=Vo+Vxw

where:
e ¢ is a scalar potential
e U is a vector potential
e u, = V¢ is curl-free (V x u, =0)

e u, =V x W is divergence-free (V - u; = 0)

Decoupling the Wave Equation

We now substitute the decomposition into the simplified wave equation 4.

pui=A+21)V(V-u) — pV x(V xu)

Left-Hand Side (Time Derivatives)

2

pit = Vo +V x O) = pVe+pV x ¥

ﬂ@(

Right-Hand Side (Spatial Derivatives)

A+2u)V(V-u) — pV x(Vxu)

V-u=V-(Vo+Vx¥)=V-(Vp)+V-(VxP¥)=V¢+0
Vxu=Vx(Vo+Vx¥)=Vx(Vp)+Vx(VxW¥)=0+Vx(VxWT)

(3)



Free Surface Rayleigh Wave

Substituting @ and into the right-hand side of equation 1:

RHS = (A +2u)V(V?¢) — uV x [V x (V x ©)]
= (A +2u)V(V?¢) — uV x [V(V - &) — V¥ (8)

We can choose the Coulomb gauge (V - ¥ = 0), which simplifies (8) to:
RHS = (A +2u)V(V?9) + uV x (VW) (9)

The Final Decoupled Form

Equating the left-hand side with the right-hand side @:
v [(A 4 o)V — pg’b} 4V x [WQ\I: _ p\ﬂ —0 (10)

For this sum of a gradient and a curl to be zero everywhere, the terms inside the brackets

must each be zero (or at most equal to a constant, which can be ignored for wave solutions):

V [\ + 200V — ] =0 (11)
V x [MV2\II - ,o\'I':] —0 (12)

This leads to two independent, decoupled wave equations.

Final Wave Equations and Speeds
From and , we obtain:

P-Wave Equation (Compressional)

A+ 2p

1 -
—¢ =V?, where o= (13)
a p
e « is the P-wave speed.
e Derived from the scalar potential ¢.
e Particle motion is parallel to the direction of propagation (u, = V¢).
S-Wave Equation (Shear)
L& 2 H
@\II =V*W, where [f=,/= (14)
p
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Free Surface Rayleigh Wave

e [ is the S-wave speed.
e Derived from the vector potential W.

e Particle motion is perpendicular to the direction of propagation (us =V x ¥).

Summary

The Helmholtz decomposition successfully decouples the elastic wave equation into two

independent wave types:
e P-waves (faster, o > /3, compressional) governed by the scalar potential ¢.
e S-waves (slower, shear) governed by the vector potential W.

This derivation elegantly explains the fundamental separation of body waves observed in

seismology.

3. — Displacement Fields

Computing Displacements at Interface from Potentials

To handle the coupled P-SV system, we use scalar potential ¢ for P-waves and vector potential

1 for SV-waves, where the displacement u is:

u=Vo+Vxy

P-waves (dilatational):

P-waves are irrotational (no rotation) and can be described by a scalar potential ¢ such
that:

Uup = V¢ (15)
In component form:
10 0¢
= — —_ 1
Y=z 7 o2 (16)

No u, component because we are considering 2D. 8% = 0, we are dealing with a 2D problem

in  — z plane (plane strain)



Free Surface Rayleigh Wave

Take Note:
Why this works
Wave equation for P-waves
1 0%
20 = ——L 17
¢= 53 (17)
Checking irrotationality
Vxup=Vx(Vp)=0 (18)
This is always true because the curl of a gradient is identically zero.
Dilatation (volume change)
V-up=V-(Ve)=V¢#0 (19)

SV-waves (shear, vertical polarization):

SV-waves are solenoidal (divergence-free) and can be described by a vector potential. For

2D motion in the x-z plane, we use:
Usy = V x (07¢70) =V X (¢Z)) (20)
For 2D P-SV case in x-z plane, the vector potential has only a y-component: ¢ = (0,1, 0)

Detailed derivation
The curl in Cartesian coordinates is:

T gy Z
VxA=|Z a% 2 (21)
A, A, A,
For A = (0,%,0):
(22)
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Free Surface Rayleigh Wave

Computing each component:

x-component:
(VxA), =

0A, 04, 90 DY

oy E_ﬁy 0z 0z

For 2D problems where nothing depends on y (0/dy = 0):

Standard curl calculation:

_0A., 04, W
(Vx A = dy 0z 0z
0A, 0A.
(VX A)y = 0z  Or
04, 0A, OV
(VxA). = ox dy Oz
R P
So:
L oY oY
_la o8 o Lo oY
VXY= la | T T
0 v 0
Therefore:
o oY
T 55 2 +8x

(23)

(28)

(29)



Free Surface Rayleigh Wave

Why this works

Wave equation for SV-waves

1%
V= (30)

Checking solenoidality (divergence-free)

Ou, Ou, 0% O

. = = — = 1
V- usy Ox i 0z  0x0z 0z20x 0 (31)
SV-waves involve no volume change.
Rotation (vorticity)
V xugy =V x (Vx(0,,0)) #0 (32)
SV-waves involve rotation/shear.
So, from equation 10 and 20:
Horizontal displacement:
9p O
e = 7 — 33
" Jxr 0z (33)
Vertical displacement:
¢ O
z = A A 4
“ 0z * Ox (34)

In matrix form, the continuity of displacement at the interface becomes:

(2)-( )




Free Surface Rayleigh Wave

4. — Proposed Wave Solutions

We are looking for a wave propagating in the x-direction with velocity ¢, and decaying in the
z-direction. This means the amplitude of the wave decays with depth. The general solutions

for the potentials are:

Oz, 2, 1) = Agilwt—hsa—kza2)
W(z, 2, 1) = Bei@i—hen—hsp2)
Where:
e w is the angular frequency.
e k. is the horizontal wavenumber (k, = w/c).
e k., and k. are the vertical wavenumbers for the P and S components, respectively.

e A and B are amplitudes to be determined.

The Evanescent (Decaying) Condition

For the wave to be a surface wave, it must decay with depth (2 — +o00). This means
the solution for F'(z) must be exponential decay, not oscillation. This requires the vertical

wavenumbers to be imaginary. We define them as:
k?za = —iera, k’zﬁ = —ikﬂ"g
where 7, and 75 are real, positive numbers that ensure exponential decay: e F="e?.
Such that:
¢(ZE, Z,t) — Aei(—kzaz)ei(wt—kzx) _ Ae—kzrazei(wt—k’zx)
w<x7 z, t) _ Bei(szgz)ei(wtszx) — Beszrgzei(wtszx)

Substitute each ansatz into its wave equation 17 and 30 to get the dispersion relations for

the vertical wavenumbers.

1 02

Vi - ot (36)
1 02

V2 = @a—ff (37)
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Free Surface Rayleigh Wave

Given:

¢<£L‘, 2, t) = Aeszmzei(wt—kzx)’ w(x7 2, If) — Beszrgzei(wtszx)
Substitute into

1 9%

aZ o2’

10

“FEar VO

V)

. 2 62 82
Assuming no y-dependence, we have V* = = + 7.

For ¢(z, z,t):

w(xa Z, t) — Be—kx’r‘gzei(wt—kxa;)'

Compute derivatives:

L

82
a—;é} = (kzr3).

Thus,

Vi) =k (rf — 1)y

Time derivative:

82
Oy = (i) = .

Substitute into the wave equation:

2

w
Cancel 1 and rearrange:
2
2 w
rg=1- B32kz2
For ¢(z, z,t):
¢(33', z, t) — AekaTazei(wtszx).
Similarly,
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Free Surface Rayleigh Wave

¢ _

VA= K021, g = w6,
Substitute into the corresponding equation:
2/,2 w”
Simplifying:
2
2 w
r,=1-— o282
Therefore,
2 2
2 _ W 2 _ w
Ta_l_a%w s 1_ﬂ2k‘2
Since: k, = w/c, k} = w?/c?
2 2
2 _ c 2 _ c
Ta — 1 E, Tﬁ — 1 E
Remember:
k?za = —ik:xra, k’zﬁ = —ikzrg
1k g 1k
, 2 c2
kza = —ka 1 5 ]{725 = _Zkr 1— @

Compute Displacement u,, u.

Given potentials:

¢(x7 Z, t) = Ae—kz’l‘azei(wt_kzx)’

Horizontal displacement:

’éb(l‘, Z, t) — Be—kz’l’gzei(wt—k;zx)‘



Free Surface Rayleigh Wave

dp O
Uy = — — —.
oxr 0z
Compute each term:
0 , 0 ,
8—f = _Z‘k;er—kzrazez(wt—kzx)7 a_f — —ergBe_k”Tﬂze’(“t_k”x).
Therefore,
0 0 .
Uy = a—j - a—f = (—ik:er_k”“Z + k:g;rBBe_k“BZ) glWt—hea)
Simplify:

Uy = Ky (—iAe’k”“Z + r,gBe’k”BZ) glwt—he)

Vertical displacement:

R

o
“Z_az+_

or’

Compute each term:

% — _kz,r,aAeszrazei(wtszx) a_¢ — _ikaeszrgzei(wtszm)
0z ’ oz
Hence,
U, = (_k$TaA€—k’wraz o Z'kaB_kwrﬁz) ei(wt—kwx)
Simplify:
u, = _km (T,aAeszraz + iBeszrﬁz) ei(wtsz:p)
Final Results:
Uy = Ky (—iAe_k““Z + rgBe_k“Bz) l(Wt=haa)
U, = _k:c (TaAe_kITO‘Z + iBe—kIT[gz) ei(wt—kzz)

Stress components and free-surface boundary conditions

The free surface at z = 0 has zero stress:

0..(2,0,t) =0 and 0,.(x,0,t) =0

13



Free Surface Rayleigh Wave

(Note: 0., is sometimes used, but for an isotropic medium, the vanishing of o,, and o, is
the standard and sufficient condition).

We need the stress-strain and strain-displacement relations:
® 0,, = A(exm + 622) + 2N€zz
® Oy = 2,U€zac

1
® €Cpx = a:cuza €2z = azuza €zx = 5(82'“30 + 8a:uz)

Ope = (A + 2u) %Uxx + )\a;:
.. = A&f O 2@%?
0, = u(%‘; " ‘95;) (33)
We begin with the definitions and solutions:
Displacements from Potentials
Uy = 0pp — 09
Uy = 0,9 + Oyt

Proposed Solutions

qb — Aei(wt—kmm—kzaz) — Aei(Wt—kxI)e—ikzaZ
¢ _ Bei(wt—kzx—kzﬁz) — Bei(wt—kzmx)e—ikzgz

For surface waves, the vertical wavenumbers are imaginary to ensure decay:
k)za = —’ik}xTa, k)zﬁ = —ikwrﬁ

with
ra =V 1—c/a? rzg=+/1—c%/p?

Thus, the potentials become:
¢ _ Aei(wt—kxx)e—eraz

w — Bei(wt—k’xm)e—kzrﬁz
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Free Surface Rayleigh Wave

The term e“*~*+%) is common to all subsequent expressions and will be omitted for clarity

during the differentiation process.

Compute the Displacement Components v, and u,

Let’s compute the derivatives of the potentials.

For ¢ = Ae karaze=ikaz,

0 = —iky

az¢ = _kxTonS
For 1) = Be Fersze ke,

Optp = —ik, )

0 = —kyrpi

Now substitute into the displacement equations:

u, Component:

Uy = 0p¢) — 0,00 = (—iks9) — (—kurp?))
= _ka¢ + k‘xT[gw
= Uy = ky(—iAe "7 4 pgBeters)em e

u, Component:

U, = z¢ + 8## = (_eraqb) + (-%W
= _era¢ - Zk:):w

= u, = k,w(_raAeszraz o Z-Beszrgz>efzkzx

Compute the Strain Components ¢,,,¢,., €.,

We now differentiate the displacements. Note that for our solutions:

0, = —ik,

Strain €,, = 0,u,:

15



Free Surface Rayleigh Wave

€or = Optly = —ikzuy
= —ik, [kz(—z'Ae’k”aZ + TﬁBeszTBz)}
= k2 [(—i)(—i)Ae "% 4+ (—i)rgBe *+"o7]
= k2 [(—1)Ae F"e* — irgBe *"o7]

€xp = —k:er_k”“Z — ik;irgBe_k”ﬂz

Strain ¢,, = J,u,:

u, = kx(_raAeszraz . ,L'Befkﬂ“gz)efikzx
azuz - ka: [_TQA(—kxTog)eikZTaz — Z.B(—kz'r5>€7kzrﬁzi| 67ikwx

= k2 [TiAe_k”“Z + Z'TBBe_k”f*Z] e that

€. = k212 Ae™FeTe 4 jk2rg Be kero%

Recall 2 =1 — ¢*/a?.
Strain ¢,, = %((‘Luw + 0,u,):

First, 0,u,:

Up = ]{;x(_iAeszraz + rﬁBeszrgz)e—ikzx
8zum = km [—Z'A(—k‘mra)e—kxmz + TﬂB(—kag)e_kxTﬁz} e—ikxx

= K2 [iTaAe_k”az — T%Be_k”f’z} g~ tha®
Second, O u.:
U, = ky(—rqAe e — jBekers®) g miker

azuz = _Zkl‘uz = _ka [k$(_raAe—k$'raz o Z-Be_erﬁzﬂ

— ki [iTaAe—kwraz o Be_erﬁz} e—ikx;t

Now add them for €,,:
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Free Surface Rayleigh Wave

azux -+ (9qu = ki [’i?“aA —+ iraA] e*kzraz + k:% [—TgB . B} eszrgz
= k2 [2irqAe "% — (r + 1) Be *+707]

Therefore,

€ra =

(Ozuy + Opuy)
2

= [QiraAe_k”az — (r% + 1)Be‘k”52]

2

k
€1p = Th2rg Ae Femo? f(r% + 1)Be T2

Recall 73 =1 —¢*/B% sorg +1=2—c*/3%

Compute the Stress Components o.. and o,

Stress 0., = AM€xz + €,2) + 206, = Negr + (A + 2p)e.,
First, find €,, + €..:

€pp T €4p = [—kiAe_k”aZ — ikimBe‘kﬂBz]
+ [k:iriAe_k”“Z + ikirgBe_k”ﬁz}
= k2A(r2 — 1) Feros

But 72 — 1= (1—-c?/a?) — 1= —c?/a?, so:

€rn + €2 = —k2A(C?JQ?)eheTo

Now compute o,,:

Oy = A(Emc + 6zz) + 2M€ZZ
=\ [—kiA(cQ/aZ)e’k”‘”ﬂ + 24 [kiriAe’k”‘*Z + ikimBe’Wﬁz}
= k2A [N /a®) + 2pr?] e keroz 19y [z’kirgBe’k”Bﬂ

Simplify the coefficient of A using:
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Free Surface Rayleigh Wave

A= pa? —2u

r2=1-c*/a?

Then:

— \c?/a®) + 2ur?

= —(pa® = 2p)(c*/a®) +2u(1 - ¢*/a?)
= —pc® + 2u(c?/a®) + 2p — 2p(c?/a?)
= —pc +2u

Using p = pu/B3?, we get:
Therefore:

Stress 0., = 2u€,;:

2

k
O = 241 {ikzraAe_k““Z — ?x(ré + 1)Be_k”ﬁz]

[ 1
= 2,uk§ irg Ae FeTaz _ 5(2 — CQ/BQ)Be_WBZ

- N _
Oop = 2uk? |irg Ac™Fera® — 5 (2 _ C_) Be harsz

Apply Boundary Conditions at z =0

At 2 =0, e Feraz = ghempz = 1

BC1: 0,.(2=0)=0

18



Free Surface Rayleigh Wave

2
k2 {(2 - @> A+ 2@7"/53} =0

(2 - 5_22> A+ 2irgB =0 (39)

BC 2: 0,,(2=0)=0

2uk? er—l Z—i Bl =0
[ oA =3 7 =
1 c?
zraA—§<2—E)B:O
2
2ZTQA—<2—§)B—O (40)

Write the Homogeneous System

We have Eq. 39 and Eq. 40:

(2—— A+2@1/1—EB—O

2 2
(2—%) 2 1—% A (o
airJ1- & —(2—C—2> B 0

62

In matrix form:

This is equivalent to the system in the notes:

(2 1- /a2 —(2—02/52)) <A>_<O>
2-2/8%) 2y1—/32) \B) \0

which is obtained by multiplying the first row by —i and the second row by i, then swapping
rows. This is a mathematically equivalent transformation that makes the matrix look
symmetric and avoids explicit imaginary units, as the amplitudes A and B can absorb phase

factors.
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Free Surface Rayleigh Wave

Note: The signs in the matrix can vary slightly depending on the sign convention used for

the vertical wavenumbers, but the final characteristic equation is always the same

The Characteristic (Rayleigh) Equation

For a non-trivial solution (A, B) # (0,0), the determinant of the coefficient matrix must be

(2\/1—;—22> (2,/1—2—2) +(2—;—Z)2:0

This is the Rayleigh Equation. It is more commonly written by squaring both sides to

Zero:

eliminate the square roots (which introduces extraneous roots that must be checked):

(2—;—2)2=4\/1—;—Z,/1—;—2

Squaring both sides gives the polynomial form:
\* c? c?
e-5) =1o(-5) (-5) 4

Solving for the Rayleigh Wave Velocity ¢

This equation has multiple solutions for ¢, but we are only interested in the physical one
where ¢ < § < « (so the wave is slower than body waves and the vertical wavenumbers are
imaginary, ensuring decay).

For a Poisson solid, a common approximation in geophysics where A = p (which implies

v = 0.25 and o?/3? = 3), the equation simplifies. The solution is:

¢~ 0.91943

This velocity is independent of frequency, meaning the homogeneous half-space model is
non-dispersive.

When is it dispersive? Rayleigh waves become dispersive when propagating in a layered
medium, such as the Earth’s crust over a mantle. Different frequencies then sample different
depths, and thus “feel” different average material properties, leading to a frequency-dependent

velocity c(w).

20



Free Surface Rayleigh Wave

Solve for a Poisson Solid from Equation

A Poisson solid is defined by A = i, which leads to a specific relationship between P-wave

and S-wave velocities:

2ot pt2e 3

P P P
g =t
p
2
«
:>@23 or =343
: ? S - .
Let’s substitute v = @ and — = 3_52 =3 into the squared characteristic equation (Eq.
«

I):

(2-y)'=16(1-3)(1-7)

This is an equation in one variable, 7. Let’s simplify and solve it.

2=t =16(1-2)(1-7)

2-t=16 (23 ) 1=

16

2-7'=5B-10-7)

Multiply both sides by 3:

3(2—7)'=16(3—)(1—7)

Now we expand both sides. First, expand (3 — v)(1 —~):

B=7)(1=-7)=3=-3v—v+7"=3—-4y+7*

So the equation becomes:

32— )" = 16(3 — 47 +7) (42)

Now, let p =2 —~, so v = 2 — p. Substituting is messy, so let’s expand (2 — ~)%:

21



Free Surface Rayleigh Wave

(2—7)* =79 —8y* +24y* - 327+ 16

Substitute back into Eq. 42:

3(v* — 877 + 249% — 32y + 16) = 16(y* — 4y + 3)

3y — 244 4+ 7272 — 967y + 48 = 167? — 647 + 48

Bring all terms to one side:

3yt — 24793 + 7272 — 96y + 48 — 167> + 64y — 48 = 0

37" — 249% 4 (72 — 16)7° + (—96 + 64)y + (48 — 48) =0

3yt — 2443 + 5672 — 32y =0

Factor out ~:

(3v® — 24~4* + 567 — 32) =0

One solution is v = 0, which corresponds to ¢ = 0 (no wave). We are interested in the roots
of the cubic:

3v% — 244% + 567 — 32 =0

We can try simple rational roots. Let’s try v = 2:

3(8) — 24(4) +56(2) —32 =24 — 96+ 112 —32 =8 (Not zero)

Let’s try v = 4:

3(64) — 24(16) + 56(4) — 32 = 192 — 384 + 224 — 32 =0 (Yes!)

So, v =4 is a root. Let’s perform polynomial division. Divide the cubic by (v — 4).
The quotient is:
3v2 — 127 48

22



Free Surface Rayleigh Wave

So the factored cubic is:

(v =4)(3y* =12y +8) =0

Now solve the quadratic 372 — 12y + 8 = 0:

12+ /144-96 12+ V48 12i4\/§_2i_2\/§

6 6 6 3

r-)/

v~ 2+1.155=3.155, 0.845
So our four potential solutions for v = ¢?/3? are:
1. m=0=c¢c=0
2. p=4=c=28
3. 13~ 3.155 = c~ 1.776/3

4. v, =~ 0.845 = ¢ = 0.91943

Select the Physically Valid Solution

Recall the decay condition: for the wave to be a surface wave (evanescent), we require 72 > 0
and 3 > 0, meaning:
2 2
2 _ ¢ 2 _ ¢
ra—1—¥>0 and Tﬁ—l—@>0
Since o > 3, the stricter condition is ¢ < 8. This implies v = ¢?/3? < 1.

Let’s check our solutions:
e v, =0: ¢=0. Trivial, no wave.
o v, =4: ¢ =2p. Violates ¢ < 5.
e 73~ 3.155: ¢ = 1.7763. Violates ¢ < .
o vy~ 0.845: ¢ = 0.9198. Satisfies ¢ < .

Therefore, the only physically valid solution for a Poisson solid is:

2

% ~0.845 = ¢~ 08456~ 0.9193

This matches the value given in the notes.
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Free Surface Rayleigh Wave

Final Summary

The homogeneous system has a non-trivial solution only when the Rayleigh wave velocity ¢

satisfies the characteristic equation. For a Poisson solid (a/3 = v/3), the valid solution is:

This confirms the existence of a Rayleigh wave that propagates more slowly than the shear
wave and decays exponentially with depth.

Rayleigh wave motion (Poisson solid)

Us ) g sin(wt — k,x) 1 _ 058\ [e—0-85ksz
u.) cos(wt — kyx) ) \ —0.85

147 ) \ e 03%e2

Halfspace Rayleigh wave
0r

\
]
F
i
Fa
#
0.5k
t=T12
- z=0 1F
ot
=]
1l
e
o
1.5 F
t=T/4
u,
t=3T/4 7 L
\‘ :_|- 5 -| ]
“t=0 =05 1 0.5 1
A
v, Displacement

(a) Rayleigh Motion (b) Halfspace Rayleigh Wave

Figure 1: Models used in the homogeneous case
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Free Surface Rayleigh Wave

Explanation of the Wave Motion Diagram

The final part of the notes describes the particle motion.

e Depth Decay: The terms e ?8%* and e=93%=* ghow that both horizontal (u,) and
vertical (u,) displacements decay exponentially with depth. The S-wave component
(associated with ¢ and the 0.39 term) decays more slowly than the P-wave component
(associated with ¢ and the 0.85 term).

e Elliptical Polarization: The matrix and the phase relationship between the sine and
cosine terms indicate that the motion is elliptical. The particle path over one cycle

traces an ellipse.

e Retrograde Motion: At the surface (z = 0), the ellipse is retrograde. This means
that as the wave passes, a particle moves in a vertical ellipse in the direction opposite

to the wave propagation.

e Phase Shifts with Depth: The diagrams at different times (¢t = 7'/2,7/4, etc.) show
how the particle at a fixed depth moves through its elliptical path over time. The
relative amplitudes and phases of u, and u, change with depth, which can cause the

ellipse to reverse its sense of rotation (become prograde) at a certain depth.

In summary, the notes provide a compact derivation of the fundamental properties of Rayleigh
waves: their existence condition (the Rayleigh equation), their non-dispersive nature in a

simple model, and their characteristic elliptical, decaying motion.
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