P-SV Wave Reflection and Transmission
(R/T) Coefficients
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Figure 1: P-SV R/T Coefficients

This note covers P-SV wave reflection and transmission (R/T) coefficients, from

the full Zoeppritz equations to their linearized form (Shuey’s equation) and the

special case of the free surface. The P-SV problem is significantly more complex than
the SH-case because P-waves and SV-waves couple at an interface. When a P-wave is

incident on an interface between two elastic media, it generates four waves (1):
e Reflected P-wave (travels back in medium 1)
e Reflected SV-wave (mode conversion in medium 1)
e Transmitted P-wave (refracted into medium 2)
e Transmitted SV-wave (mode conversion in medium 2)

This is fundamentally different from SH waves, where no mode conversion occurs because
SH motion is perpendicular to the plane of incidence. This leads to a system of four

equations instead of two.



1. Concept Overview of P-Sv Wave Propagation

Problem Setup

We consider an interface between two elastic solids:

e Medium 1: P-wave velocity a;, S-wave velocity (;, density p;, Lamé parameters

)\hlul

e Medium 2: P-wave velocity as, S-wave velocity (,, density ps, Lamé parameters

A2, f2

Snell’s Law

For an incident plane wave (P or SV), Snell’s Law governs of all generated waves:

sini  sini  sinj  siniy  sinj

aq a7 51 (&%) 52

where p is the ray parameter, constant for all waves.

Potential Functions

To handle the coupled P-SV system, we use scalar potential ¢ for P-waves and vector

potential ¢ for SV-waves, where the displacement u is:

u=Vé+Vxip

P-waves (dilatational):

Up = qu (1)

SV-waves (shear, vertical polarization):
Usy = V % (07¢7 O) (2)
For 2D P-SV case in x-z plane, the vector potential has only a y-component: 1) = (0,1, 0).

Boundary Conditions

At interface z = 0, we require continuity of:

1. Displacement: u, and u,



This leads to the displacement components:

op oY 0¢ n oY
Ue = 77 — 7 Uy, = 7 a_
Jxr 0z 0z Ox
2. Stress: 0., (normal stress) and o,, (shear stress)
Stress expressions in terms of potentials:
Remember:
Uij = )\51] €Lk + 2#61‘]‘
Gkk:V'u:€11+€22+633
2o 0%
22 = AV2O+ 20 ( 5
’ o+ u(az2+8:c8z

(0 P 0
Tez = Ox0z  0x?2 022

The Zoeppritz Equations:

Applying these four boundary conditions to the complete wavefield (incident P, reflected

P, reflected SV, transmitted P, transmitted SV) results in a 4x4 system of linear equa-

tions. This full system is the Zoeppritz equations. Solving them gives the exact R/T

coefficients for a planar interface between two solids. They are the "ground truth” but

are algebraically complex and non-intuitive.

2. Wave Equations in Each Medium

Medium 1:

(bl :Alei(wtszaﬂrkzaz) _i_A/ei(wtszxszaz)

¢1 — Blei(wtszszzgz)

Medium 2:



¢2 — AQei(wtszx+kzaz) (6)
w2 — B2€i(wt7k1x+kzgz) (7)

Sign conventions:

e Positive k, indicates downward propagation

e Negative k, indicates upward propagation

Wavenumber Relations

From Snell’s law, k, is continuous across the interface:

w? w?
kza = ? - k?ga kzﬁ = @ - kgzc (8)

3. Displacement Fields

Computing Displacements at Interface from Potentials

To handle the coupled P-SV system, we use scalar potential ¢ for P-waves and vector

potential ¢ for SV-waves, where the displacement u is:

u=Vo+Vxy

P-waves (dilatational):

P-waves are irrotational (no rotation) and can be described by a scalar potential ¢ such
that:

up = Vo (9)
In component form:
_ 09 _ 09

No u, component because we are considering 2D.

Take Note:



Why this works

Wave equation for P-waves
1 9%¢

2 —_— ——
V¢_a20t2

Checking irrotationality
Vxup=Vx(Vg)=0

This is always true because the curl of a gradient is identically zero

Dilatation (volume change)

V- (V9) = V26 #0

V'llpz

SV-waves (shear, vertical polarization):

SV-waves are solenoidal (divergence-free) and can be described by a vector potential.
For 2D motion in the x-z plane, we use:
Usy = V X (Oa¢70) =V X (ng) (11)
For 2D P-SV case in x-z plane, the vector potential has only a y-component: 1) = (0,1, 0).

Detailed derivation
The curl in Cartesian coordinates is:

A T
VxA=|2 2 2 (12)
A, Ay A,
For A = (0,,0):
Ty z
V(040 =2 2 2 (13)
0 v 0
Computing each component:
x-component:
0A, 04, 00 0Oy oY
— =— - — =—— 14
0z 0z (14)

A_ — _—
(VX A, oy 0z oy

For 2D problems where nothing depends on y (0/dy = 0):



Standard curl calculation:

_0A, 04, OV
(VXA)“"_ay_az_ 0z
0A, 0A.
(Vi Ay = 9z  Or
04, 0A, O
(VxA). = ox oy Oz
_ W W
o= T T Gy
So:
v o oY
_lo o o|__9% 9%
VXY =la g | T8 TR,
0 v 0
Therefore:
oY L oY
T T 87 Z_—’_ax

Why this works

Checking solenoidality (divergence-free)

Ou,
ox

+8u2_ 0% B 0% B
0z  Oxdz 020x

V- ugy =

SV-waves involve no volume change.

Rotation (vorticity)
V xugy =V x (Vx(0,4,0)) #0

SV-waves involve rotation/shear.

(19)

(20)

0

So, from equation 10 and 20:

Horizontal displacement:




_ 09 oY

=5 bz (24
Vertical displacement:
op  OY
.= — + — 25
“ 0z + ox (25)

In matrix form, the continuity of displacement at the interface becomes:

Uy o az _az ¢
() 0) C)

4. Computing Stress Components in Terms of Potentials

General Stress-Strain Relations

For an isotropic elastic medium, the stress tensor is:

Tij = NOij€xk + 2p1€;; (27)
where:
e )\ 1 are Lamé parameters
e 0;; is the Kronecker delta

® cpr = €11 + €29 + €33 is the dilatation (volumetric strain)

1 (0w Ouj) . i
® =3 (81,]_ + 8@) is the strain tensor

Step 1: Express Dilatation in Terms of Displacement

The dilatation is:

Ou, — Ouy n ou,

=V -u= 28

€ =V u ox + oy 0z (28)
For 2D problems in the x-z plane (no y-dependence):
duy  Ou,

S (29)

Rk ox 0z

Step 2: Express Displacements in Terms of Potentials

Recall:

e P-wave: up = V¢, so u, = %, u, = %

e SV-wave: ugy = V x (0,1,0), 50 uy = =22 4, = 9
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Total displacement:

Step 3: Calculate Dilatation

So:

_9¢ 9y
e = or 0Oz
09 Oy
9 o
_ Oug  Ou,
Crk = ox 0z
o (0
L0 (00 o\ 0 (06 o
Oox \Ox Oz 0z \ 0z
B 0%¢ B 0% 0% 0%
922 Oxdz 022 020%
82 62 2 2
P Py L0 0 2
ox2  Prdz 022 920z
0? 0?
= g+ g = V0

ekk:V-u:V2¢

(32)

) (3)

(34)

(37)

This shows that the dilatation depends only on the P-wave potential ¢, not on the SV-

wave potential 1.

Step 4: Derive o,

From the general formula (equation 31):

where:

Computing ¢,

6ZZ

Ozz = )\Ekk + 2ﬂ€zz

ou,

0z

P

T 922

o0 (00 o)

0z 02\ 0z ' or

(38)
(39)
0%
0x0z (40)



Substituting into o,

0., = \V20 + 2u (@ + Oy )

022 0x0z
¢y 0%¢ 0%¢ 0%
=4 (a_ i 0_) TG T

B 82¢ 82¢ 8% 821/1
= Agm TG TG TG,

B P 0% 0% 0%
=2 <a_ i a_> T2 s

Note that V2¢ = P¢ 4 2 So, this can be rewritten as:

Ox2 0227
0% 0%
o2
0.. = AV ¢+2,uaz2 +2'u8x02
0?¢ 0%
o2
Tz = AV + 20 (6’22 + 8x82)

Step 5: Derive o,

The shear stress is:

U:vz:2,uexz:2',ul'§ +—=— ] = az—i-%

Computing Each Term

First term:

0z 0z

ouy 0 (a¢ a¢) G

or  0z) 010z 022

Second term:

du, D <@+a_¢)_ 0% O

or  0r\dz  0xr) 0z0r 012

Addlng the Terms
0 x 0 z 82(25 82 32gb 82

0z + or  0xdz 022 ' 0xdz = Ox?

0%¢ 0% 0%
N 28x82 922 + 0x?

(41)

(42)

(43)

(44)

(48)

(49)

(50)

(51)



Final Expression for o,

D¢ O 0%
Tz ,u( 0xdz 022 * 8x2) (52)

B *¢  0*p 0%
oz = It (2 0x0z * o2 822> (53)

The fundamental relationships are:

€k = V -u = €11 + €22 + €33 = 52¢ (54)
0%y 0%
= 2 B =
0se = AV20 + 21 (622 + axaz) M Oped + 0,20) + 2p(0s) + Oat)) (55)

B ¢ 0% P\
e =N (23m8z + ox? 822) = #(200:6 + Ouut) = 0.29) %)

Physical Interpretation

e The dilatation € depends only on the P-wave potential ¢, confirming that only

P-waves cause volume changes.

e The normal stress o, involves both ¢ and v, showing coupling between P and SV

waves at boundaries.
e The shear stress 0, also involves both potentials, demonstrating mode conversion.

e These expressions allow us to write boundary conditions entirely in terms of ¢ and

1, which is essential for deriving the Zoeppritz equations.

5. Boundary Conditions at z=0

At an interface (say z = 0), we require:

Four Boundary Conditions:

1. Continuity of horizontal displacement: ul) = uf?

. Continuity of vertical displacement: ul = o

[\

3. Continuity of shear stress: o) = ol

4. Continuity of normal stress: o) =g

10



At a free surface (z = 0), we require:
1. 0., =0
2. 0,,=0

These conditions, expressed in terms of ¢ and 1 using the formulas derived above, lead
to the famous Zoeppritz equations for reflection and transmission coefficients. These four

equations also determine the four unknowns: A’, By, Ay, Bs.

6. Detailed Derivation of Boundary Conditions

Computing Derivatives

For ¢l — Alei(wt—kmx—l-kzalz) + Alei(wt—kxaﬁ—kzalz) at 2 = 0:

0 :
D) = k(A 4 A (57)
€ z=0
oJol) , N i(wt—ke)
a— = Zkzal (Al —A )6 v (58)
z z=0
For o, = Bje!@her=hap2) at » = (:
) ,
% = —ik, By k) (59)
z=0
| k. Byeitet—hen) 60
) 21 P1
Z z=0
Similarly for medium 2 at z = 0:
¢2 — AQei(wt—kzx—i-kaz) (61)
w2 — BQgi(wtszx+k252z) (62)
0 )
% = —iky Ape’ ) (63)
z=0
B .
% = ka0, Age R (64)
“ z2=0

11
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ox
o
0z

— _Z'ka2ei(wt7kIz)
z=0

_ ikzﬁg B2€i(wt—kz:p)

z=0

Boundary Condition 1: Horizontal Displacement

US)‘ -0 f(rQ)‘ -0
96| 0 o
ox 0z |,_, Ox 0z |,_,

—iky(Ay + A') = (—ik.p, By) = —iky Ay — ik.5, B

Simplifying:

kx(Al + A/) - kzﬁlBl — kxAQ —|— kz,BQBQ

Rearrange:

k'x AI - kzﬂlBl — kxAz - k’zﬁ2B2 = _kx Al

Boundary Condition 2: Vertical Displacement

w0 (2)

z ‘z:O = UZ ‘z:O
Opr  OPr|  Opa Oy
0z + ox 2:0_ 0z + oz |,_,

ihzoy (AL — A') + (—ik,By) = ikoa, Ao + (—ik, Bo)

Simplifying:

kZOll (Al - A/) - kal = kza2A2 - kmB2

_kzalA/ = szl — kza2A2 + ka:BQ — _kzalAl

Boundary Condition 3: Shear Stress

(1)‘ — (2)‘
U:L"z =0 U:pz 2=0

12
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After computing second derivatives:

H1 [281:z¢1 + axxwl - 8z2¢1]z:0 = U2 [28xz¢2 + aacxw2 - 8ZZ¢2:|Z:0 (76)

Computing the second and mixed derivatives using equation 59 - 68:

Opi| om0 = (—iky) (iksq, ) (A — AN)e!@IRe?) — | | (A — A')elwthat) (77)

Ouatfr]smo = (—iky)? Bie' @) = — kB!t het) (78)
Ousthilimo = (—ikap,)? Bre' ™) = k25 Befeher) (79)
awz¢2|z:0 - (_Zk )(Zkzaz) A2 Hwt—hez) k kzag A2 iwt—hsa) (80)
Dratislao = (—iky ) Boe i—het) — 2 By ilet—hos) (81)
8zzw2|z:0 — (Zkzﬂg) B2ez(wt—kzx) — _k§ﬁ2B2€i(wt—kzm) (82)

Substitute the derivatives and cancel the common terms, this yields:

pi1[2kgkza, (Ar — A) + (K25, — k2)Bi] = p2[2kukza, Az + (K25, — k) B (83)

—2rkokza, A+ py(k2s, — K2) By — 2pinkpkza, Ay — pa(k2s, — k2) By = —2p1kgkza, Ay

Multiply both sides by -1:

Boundary Condition 4: Normal Stress

0221 ‘z:O = 0222 |z:0 (84)

Al(amcd)l + 8zz(z)l) + 2ﬂl(azz¢1 + 8mzw1> |z:0
= X2(Onap2 + 02202) + 2412(02. 002 + 5xz¢2)|2:0 (85)

Computing:

13



Dpai] im0 = —k2 (A1 + Al)eiwikﬁ) (86)

Ozt |:m0 = =Ko, (Ar + A)e! ) (87)
Ortn]om0 = —hipkzs, Bre'@ ) (88)
Opa|smo = —ki2 Ay 'WiFew) (89)
0zz02|2=0 = —kzag Ay e!@=he) (90)
Oustba|sg = kipkg, Bae' ' o) (91)

After substitution and simplification:

M(=k2— k2 ) (AL + A + 200 (K2, ) (A + A — 2k k., By

zZa za

= \o(—K2 — K2, )Ag + 2ua(—K2, ) Ag + 2uok,k.5,Bs (92)

zZQo za2

This can be rewritten as:

(kS + K2, ) + 2mk2,, ] (Ar + A') + 2k ks, By
= No(k] + kZ,,) + 20k, Ao — 20k, kg, By (93)

zag

za za zZQg zZQg

M2+ K2 ) + 2002 ]A’+2,u1kxkzﬁ1B1—[)\g(kﬁJrkz )+ 2pak? ]A2+2u2/<xkzﬁ232

= — |:)\1(k323 —+ k2 ) + 2/11]{}2(11] Al (94)

Let:

M1 = Al(ki + kz ) + 2,U,1k2

zay zag

Mg = )\2(]6'320 + kz ) + 2M2k'2

zZag zao

14



Matrix Form (Zoeppritz System)

Collecting the four equations from the boundary conditions into matrix form, Mz = b,
where b is the right-hand vector containing the incident-wave terms (proportional to

Ay). Explicitly the coefficient matrix (rows are eqns from the BCs, columns unknowns
[AI, Bl, AQ, BQ]) is:

ks —k.p —k, —k.p2 A —k Ay

ko K, ke k. B ke Ay
ihokear (k2 — K25) 2pinkakior —pa(k2 — K2, | | Az | | 2mikokecn Ay
M, 2ukok. 1 —M, 2ptok.k.po By M A

Divide the entire system by A;:

ks —k.p —ky —k.p2 Rpp —k,
—k.a1 —ky —kza2 ks Rps —kzon
2 kpkoar i (k2 — k‘zﬁl) 2iokpkoen  —pa(k2 — kZBQ) Tpp N 201 kpk 2o
M, 21kzk.p1 — M, 2pak k5o Tps — M,

Where:

M1 = /\1(]'6':% + l{?2 ) + 2[,61]{32

zZog zZa
2 2 2
My = /\Q(ka: + kzag) + 2M2kza2

The reflection and transmission coefficients are therefore:

A By Ay By
Rpp = — Rps = -1,  Tpp==2 :

This 4x4 linear system is the general Zoeppritz equation for a P-wave incident on a

plane elastic interface. Solving for RC and TC gives:

Rpp
R

Ll IR
Tpp

15



Where:

ka} _kzﬂl _kcc _k:ZBQ
_kzal _kx _kza2 k:p
M —
2M1kxkzal /Ll(k;g - kzﬂl) Q,UQkaskzaZ _,UZ(k‘i - k,zﬂQ)
M, 2u1kzk.p1 — M, 2ok k.o
_kx
_kzozl
b —
2M1kmkza1
_Ml

The Zoeppritz system of equation above in its potential-based form can be transformed

into a more compact form, similar to the one presented in the classical book by Aki and
Richards

7. Special Case: P-Sv R/T Coefficients at Free Surface
(Earth’s Surface)

L S
X
Halfspace ‘\\
y ;\I
j 1
A )
A
z

Figure 2: P-SV R/T Coefficients at Earth Surface
The free surface (e.g., the Earth’s surface) is a special case where Medium 2 is a vacuum.

This simplifies the problem because there are no transmitted waves and the boundary

conditions become stress-free.

At Earth’s surface, the boundary conditions simplify to stress-free conditions:

Oz —0 07 O2z|,_g — 0 (95)
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This gives us two equations for two unknowns (A’, By):

Free Surface Boundary Conditions

e Medium 1: Elastic solid with parameters «, 3, p, A, i
e Medium 2: Vacuum (z > 0)

e Boundary conditions at z =0: ¢,, =0 and 0,, =0

Shear Stress = 0

From Boundary Condition 3 with medium 2 absent:

(1[2kokza(Ar — A') + (k25 — K2) By (96)

2kykza(Ar — A') + (k2 — k25)B1 = 0 (97)
Dividing by k2:

kza / k?,@

Qkx(Al—A)—i— k2_1 B =0 (98)

Defining:
reg = —— = coti, and rg = kiﬁ = cotg
k?2

Note that -2 = 73, so:

2o (A — A" + (r5 — 1)B; =0 (99)

Normal Stress = 0

From Boundary Condition 4 with medium 2 absent:

MK + K2 ) (A + A') + 2p(k2,) (A + A') + 2k, k5B = 0

[)\(k’i + kga) + Qnga](Al + A/) + 2“kxkz,3B1 =0 (100)

We can rewrite:

INK2 + E2,) + 2uk2 ) (AL + A') = —2pk, k.3 B, (101)

17



Dividing by k2:

k? k2 k.
{)\ (1 + ﬂ) + 2 ZQ"‘] (A1 + A) = —2pu k631

2 .

A(1+ 7‘3) + 2;11’2](/11 + A') = =2ursBy

This can be rewritten as:

ML+72) (A + A +2ur2 (A + A') + 2urgBy = 0

A1+72)(Ar+ A +2u (r(Ar+ A)) +13By) = 0

Solving for Reflection Coefficients

System of Equations

From Equation 99:

From Equation 104:

A1+72)(Ar+ A +2u (r(Ar+ A)) +13By) =0

AL+ 72) 4 2pr2] (A + A = —2urgBy

—2purgB

A+ A =
L AL +72) +2ur?

Solving by Elimination Method

Let:

S=A+A (sum)
D =A, — A" (difference)

Then: A; = (S+D)/2and A" =(S—D)/2

18
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(105)

(106)
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From Eq. 105:

D=

From Eq. 106:

S:

(1-— 7“2)
2r,

2urg

Therefore:

A+ r2) 22

2urg

{(1 —75)

2r,

2urg

AL+ 72) + 2ur?
(1-— 7“?3)

Final Expressions

After significant algebraic manipulation, the reflection coefficients are:

P-to-P Reflection Coeflicient:

[_)\(1 +72) +2ur? 27,

Rp

A Argrg — (r% —1)?
A Ararg + (T% —1)?

P-to-SV Conversion Coefficient:

4r, (1 — T%)

- Arorg + (r% —1)?

Rgy = %
where:
. ko
a — kx
rg = Ij;ﬂ

x

Note: The angles i, and iz are measured from the vertical (normal to the surface).

Remember the relations:
o \+2u = pa?
o pu=pp’

o 24k, =w/a?=k2

. COS 1q,
=cot 1y, = ——

SiN 24

. cosig
=cotig = ——

sin g
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(110)

(111)

(112)

(113)

(114)

(115)

(116)



8. Physical Interpretation

Key Features

1. Mode Conversion: Unlike SH waves, P-waves generate both P and SV reflected

waves at a free surface.

2. Critical Angles: When i > i, = sin"!(a/3), the SV wave becomes inhomogeneous

(evanescent).
3. Amplitude Behavior:

e At normal incidence (i = 0): r, — 00, 13 — 00, giving Rp = —1, Rgy =0
e At grazing incidence (i — 90): r, — 0, 753 — 0, giving Rp — 1, Rgy — 0

e Maximum P-to-SV conversion occurs at intermediate angles

4. Energy Conservation:

Igcosjg

|Rp|* + |Rsv|” 1 (117)

1, cosi,

where I = pv is the impedance.

Special Values

At normal incidence (i, = 0), using L’Hopital’s rule or direct evaluation:

Rp(0) = —1 (phase reversal) (118)
Rsy(0) =0 (no mode conversion) (119)

At the critical angle 4. = sin~*(a/3):
e The SV wave grazes along the surface (ig = 90)
e r3=0

e Maximum mode conversion occurs

9. Shuey’s Approximation (Linearized AVO)

For small contrasts across an interface and weak angles, the P-wave reflection coefficient

can be approximated:

R(0) = R(0) + G'sin® § + F(tan® § — sin®0) (120)

where:

20



Intercept (normal incidence reflectivity):

1 /Ap A«
Gradient (AVO slope):
A« 268% (Ap  2Ap
G—z‘7(7+7 (122)
Large-angle term:
A«
F=2= (123)

Here:
e Ap=po—p1, Aa=ay—ay, Al = — B
o p=(p1+p)/2, a=(a1+a)/2 B=(B+p)/2
e 0 is the angle of incidence

This approximation is widely used in seismic exploration for amplitude-versus-offset

(AVO) analysis to detect hydrocarbons and characterize lithology.

Physical Meaning of AVO Parameters

e R(0): Measures the impedance contrast at normal incidence

e (5: Captures the angle-dependent behavior, sensitive to fluid content and Poisson’s

ratio changes

e [ Important at large angles, related to P-wave velocity contrast

Summary

The P-SV problem is significantly more complex than the SH problem due to:
1. Mode conversion between P and SV waves
2. Coupling through both displacement and stress boundary conditions
3. Four coupled equations instead of two
4. Angle-dependent behavior that depends on both a and

The exact Zoeppritz equations provide the complete solution, while Shuey’s approxima-

tion offers a practical, linearized alternative for seismic interpretation.
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