P-SV Wave Reflection and Transmission (R/T) Coefficients

October, 2025

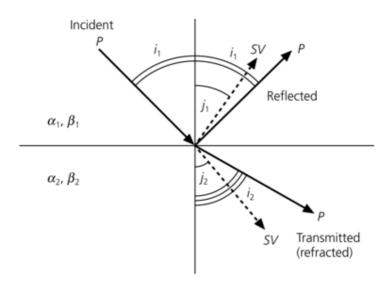


Figure 1: P-SV R/T Coefficients

This note covers P-SV wave reflection and transmission (R/T) coefficients, from the <u>full Zoeppritz equations</u> to their <u>linearized form (Shuey's equation)</u> and the special case of the free surface. The P-SV problem is significantly more complex than the SH-case because P-waves and SV-waves couple at an interface. When a P-wave is incident on an interface between two elastic media, it generates four waves (1):

- Reflected P-wave (travels back in medium 1)
- Reflected SV-wave (mode conversion in medium 1)
- Transmitted P-wave (refracted into medium 2)
- Transmitted SV-wave (mode conversion in medium 2)

This is fundamentally different from SH waves, where no mode conversion occurs because SH motion is perpendicular to the plane of incidence. This leads to a system of four equations instead of two.

1. Concept Overview of P-Sv Wave Propagation

Problem Setup

We consider an interface between two elastic solids:

- Medium 1: P-wave velocity α_1 , S-wave velocity β_1 , density ρ_1 , Lamé parameters λ_1, μ_1
- Medium 2: P-wave velocity α_2 , S-wave velocity β_2 , density ρ_2 , Lamé parameters λ_2, μ_2

Snell's Law

For an incident plane wave (P or SV), Snell's Law governs of all generated waves:

$$\frac{\sin i}{\alpha_1} = \frac{\sin i'}{\alpha_1} = \frac{\sin j}{\beta_1} = \frac{\sin i_2}{\alpha_2} = \frac{\sin j_2}{\beta_2} = p$$

where p is the ray parameter, constant for all waves.

Potential Functions

To handle the coupled P-SV system, we use scalar potential ϕ for P-waves and vector potential ψ for SV-waves, where the displacement \mathbf{u} is:

$$\mathbf{u} = \nabla \phi + \nabla \times \psi$$

P-waves (dilatational):

$$\mathbf{u}_P = \nabla \phi \tag{1}$$

SV-waves (shear, vertical polarization):

$$\mathbf{u}_{SV} = \nabla \times (0, \psi, 0) \tag{2}$$

For 2D P-SV case in x-z plane, the vector potential has only a y-component: $\psi = (0, \psi, 0)$.

Boundary Conditions

At interface z = 0, we require continuity of:

1. Displacement: u_x and u_z

$$\begin{pmatrix} u_x \\ u_z \end{pmatrix} = \begin{pmatrix} \partial_x & -\partial_z \\ \partial_z & \partial_x \end{pmatrix} \begin{pmatrix} \phi \\ \psi \end{pmatrix} \tag{3}$$

This leads to the displacement components:

$$u_x = \frac{\partial \phi}{\partial x} - \frac{\partial \psi}{\partial z}, \quad u_z = \frac{\partial \phi}{\partial z} + \frac{\partial \psi}{\partial x}$$

2. Stress: σ_{zz} (normal stress) and σ_{xz} (shear stress)

Stress expressions in terms of potentials:

Remember:

$$\sigma_{ij} = \lambda \, \delta_{ij} \, \epsilon_{kk} \, + 2\mu \epsilon_{ij}$$

$$\epsilon_{kk} = \nabla \cdot u = \epsilon_{11} + \epsilon_{22} + \epsilon_{33}$$

$$\sigma_{zz} = \lambda \nabla^2 \phi + 2\mu \left(\frac{\partial^2 \phi}{\partial z^2} + \frac{\partial^2 \psi}{\partial x \partial z} \right)$$

$$\sigma_{xz} = \mu \left(2 \frac{\partial^2 \phi}{\partial x \partial z} + \frac{\partial^2 \psi}{\partial x^2} - \frac{\partial^2 \psi}{\partial z^2} \right)$$

The Zoeppritz Equations:

Applying these four boundary conditions to the complete wavefield (incident P, reflected P, reflected SV, transmitted P, transmitted SV) results in a 4x4 system of linear equations. This full system is the Zoeppritz equations. Solving them gives the exact R/T coefficients for a planar interface between two solids. They are the "ground truth" but are algebraically complex and non-intuitive.

2. Wave Equations in Each Medium

Medium 1:

$$\phi_1 = A_1 e^{i(\omega t - k_x x + k_{z\alpha} z)} + A' e^{i(\omega t - k_x x - k_{z\alpha} z)}$$

$$\tag{4}$$

$$\psi_1 = B_1 e^{i(\omega t - k_x x - k_{z\beta} z)} \tag{5}$$

Medium 2:

$$\phi_2 = A_2 e^{i(\omega t - k_x x + k_{z\alpha} z)} \tag{6}$$

$$\psi_2 = B_2 e^{i(\omega t - k_x x + k_{z\beta} z)} \tag{7}$$

Sign conventions:

- Positive k_z indicates downward propagation
- Negative k_z indicates upward propagation

Wavenumber Relations

From Snell's law, k_x is continuous across the interface:

$$k_{z\alpha} = \sqrt{\frac{\omega^2}{\alpha^2} - k_x^2}, \quad k_{z\beta} = \sqrt{\frac{\omega^2}{\beta^2} - k_x^2}$$
 (8)

3. Displacement Fields

Computing Displacements at Interface from Potentials

To handle the coupled P-SV system, we use scalar potential ϕ for P-waves and vector potential ψ for SV-waves, where the displacement \mathbf{u} is:

$$\mathbf{u} = \nabla \phi + \nabla \times \psi$$

P-waves (dilatational):

P-waves are **irrotational** (no rotation) and can be described by a scalar potential ϕ such that:

$$\mathbf{u}_P = \nabla \phi \tag{9}$$

In component form:

$$u_x = \frac{\partial \phi}{\partial x}, \quad u_z = \frac{\partial \phi}{\partial z}$$
 (10)

No u_y component because we are considering 2D.

Take Note:

Why this works

Wave equation for P-waves

$$\nabla^2 \phi = \frac{1}{\alpha^2} \frac{\partial^2 \phi}{\partial t^2}$$

Checking irrotationality

$$\nabla \times \mathbf{u}_P = \nabla \times (\nabla \phi) = 0$$

This is always true because the curl of a gradient is identically zero.

Dilatation (volume change)

$$\nabla \cdot \mathbf{u}_P = \nabla \cdot (\nabla \phi) = \nabla^2 \phi \neq 0$$

SV-waves (shear, vertical polarization):

SV-waves are **solenoidal** (divergence-free) and can be described by a vector potential. For 2D motion in the x-z plane, we use:

$$\mathbf{u}_{SV} = \nabla \times (0, \psi, 0) = \nabla \times (\psi \hat{y}) \tag{11}$$

For 2D P-SV case in x-z plane, the vector potential has only a y-component: $\psi = (0, \psi, 0)$.

Detailed derivation

The curl in Cartesian coordinates is:

$$\nabla \times \mathbf{A} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$$
 (12)

For **A** = $(0, \psi, 0)$:

$$\nabla \times (0, \psi, 0) = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & \psi & 0 \end{vmatrix}$$
 (13)

Computing each component:

x-component:

$$(\nabla \times \mathbf{A})_x = \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} = \frac{\partial 0}{\partial y} - \frac{\partial \psi}{\partial z} = -\frac{\partial \psi}{\partial z}$$
(14)

For 2D problems where nothing depends on y ($\partial/\partial y = 0$):

Standard curl calculation:

$$(\nabla \times \mathbf{A})_x = \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} = -\frac{\partial \psi}{\partial z}$$
(15)

$$(\nabla \times \mathbf{A})_y = \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} = 0$$
 (16)

$$(\nabla \times \mathbf{A})_y = \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} = 0$$

$$(\nabla \times \mathbf{A})_z = \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} = \frac{\partial \psi}{\partial x}$$
(16)

$$u_x = -\frac{\partial \psi}{\partial z}, \quad u_z = \frac{\partial \psi}{\partial x}$$
 (18)

So:

$$\nabla \times \boldsymbol{\psi} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & \psi & 0 \end{vmatrix} = -\hat{x}\frac{\partial \psi}{\partial z} + \hat{z}\frac{\partial \psi}{\partial x}$$
(19)

Therefore:

$$u_x = -\frac{\partial \psi}{\partial z}, \quad u_z = +\frac{\partial \psi}{\partial x}$$
 (20)

Why this works

Wave equation for SV-waves

$$\nabla^2 \psi = \frac{1}{\beta^2} \frac{\partial^2 \psi}{\partial t^2} \tag{21}$$

Checking solenoidality (divergence-free)

$$\nabla \cdot \mathbf{u}_{SV} = \frac{\partial u_x}{\partial x} + \frac{\partial u_z}{\partial z} = \frac{\partial^2 \psi}{\partial x \partial z} - \frac{\partial^2 \psi}{\partial z \partial x} = 0$$
 (22)

SV-waves involve no volume change.

Rotation (vorticity)

$$\nabla \times \mathbf{u}_{SV} = \nabla \times (\nabla \times (0, \psi, 0)) \neq 0 \tag{23}$$

SV-waves involve rotation/shear.

So, from equation 10 and 20:

Horizontal displacement:

$$u_x = \frac{\partial \phi}{\partial x} - \frac{\partial \psi}{\partial z} \tag{24}$$

Vertical displacement:

$$u_z = \frac{\partial \phi}{\partial z} + \frac{\partial \psi}{\partial x} \tag{25}$$

In matrix form, the continuity of displacement at the interface becomes:

4. Computing Stress Components in Terms of Potentials

General Stress-Strain Relations

For an isotropic elastic medium, the stress tensor is:

$$\sigma_{ij} = \lambda \delta_{ij} \epsilon_{kk} + 2\mu \epsilon_{ij} \tag{27}$$

where:

- λ, μ are Lamé parameters
- δ_{ij} is the Kronecker delta
- $\epsilon_{kk} = \epsilon_{11} + \epsilon_{22} + \epsilon_{33}$ is the dilatation (volumetric strain)
- $\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$ is the strain tensor

Step 1: Express Dilatation in Terms of Displacement

The dilatation is:

$$\epsilon_{kk} = \nabla \cdot \mathbf{u} = \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z}$$
 (28)

For 2D problems in the x-z plane (no y-dependence):

$$\epsilon_{kk} = \frac{\partial u_x}{\partial x} + \frac{\partial u_z}{\partial z} \tag{29}$$

Step 2: Express Displacements in Terms of Potentials

Recall:

- P-wave: $\mathbf{u}_P = \nabla \phi$, so $u_x = \frac{\partial \phi}{\partial x}$, $u_z = \frac{\partial \phi}{\partial z}$
- SV-wave: $\mathbf{u}_{SV} = \nabla \times (0, \psi, 0)$, so $u_x = -\frac{\partial \psi}{\partial z}$, $u_z = \frac{\partial \psi}{\partial x}$

Total displacement:

$$u_x = \frac{\partial \phi}{\partial x} - \frac{\partial \psi}{\partial z} \tag{30}$$

$$u_z = \frac{\partial \phi}{\partial z} + \frac{\partial \psi}{\partial x} \tag{31}$$

Step 3: Calculate Dilatation

$$\epsilon_{kk} = \frac{\partial u_x}{\partial x} + \frac{\partial u_z}{\partial z} \tag{32}$$

$$= \frac{\partial}{\partial x} \left(\frac{\partial \phi}{\partial x} - \frac{\partial \psi}{\partial z} \right) + \frac{\partial}{\partial z} \left(\frac{\partial \phi}{\partial z} + \frac{\partial \psi}{\partial x} \right)$$
(33)

$$= \frac{\partial^2 \phi}{\partial x^2} - \frac{\partial^2 \psi}{\partial x \partial z} + \frac{\partial^2 \phi}{\partial z^2} + \frac{\partial^2 \psi}{\partial z \partial x}$$
 (34)

$$= \frac{\partial^2 \phi}{\partial x^2} - \frac{\partial^2 \psi}{\partial x \partial z} + \frac{\partial^2 \phi}{\partial z^2} + \frac{\partial^2 \psi}{\partial z \partial x}$$
 (35)

$$\epsilon_{kk} = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = \nabla^2 \phi \tag{36}$$

So:

$$\epsilon_{kk} = \nabla \cdot \mathbf{u} = \nabla^2 \phi \tag{37}$$

This shows that the dilatation depends only on the P-wave potential ϕ , not on the SV-wave potential ψ .

Step 4: Derive σ_{zz}

From the general formula (equation 31):

$$\sigma_{zz} = \lambda \epsilon_{kk} + 2\mu \epsilon_{zz} \tag{38}$$

where:

$$\epsilon_{zz} = \frac{\partial u_z}{\partial z} \tag{39}$$

Computing ϵ_{zz}

$$\epsilon_{zz} = \frac{\partial u_z}{\partial z} = \frac{\partial}{\partial z} \left(\frac{\partial \phi}{\partial z} + \frac{\partial \psi}{\partial x} \right) = \frac{\partial^2 \phi}{\partial z^2} + \frac{\partial^2 \psi}{\partial x \partial z}$$
 (40)

Substituting into σ_{zz}

$$\sigma_{zz} = \lambda \nabla^2 \phi + 2\mu \left(\frac{\partial^2 \phi}{\partial z^2} + \frac{\partial^2 \psi}{\partial x \partial z} \right)$$
 (41)

$$= \lambda \left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} \right) + 2\mu \frac{\partial^2 \phi}{\partial z^2} + 2\mu \frac{\partial^2 \psi}{\partial x \partial z}$$
 (42)

$$= \lambda \frac{\partial^2 \phi}{\partial x^2} + \lambda \frac{\partial^2 \phi}{\partial z^2} + 2\mu \frac{\partial^2 \phi}{\partial z^2} + 2\mu \frac{\partial^2 \psi}{\partial x \partial z}$$
 (43)

$$= \lambda \left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} \right) + 2\mu \frac{\partial^2 \phi}{\partial z^2} + 2\mu \frac{\partial^2 \psi}{\partial x \partial z}$$
 (44)

Note that $\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2}$, So, this can be rewritten as:

$$\sigma_{zz} = \lambda \nabla^2 \phi + 2\mu \frac{\partial^2 \phi}{\partial z^2} + 2\mu \frac{\partial^2 \psi}{\partial x \partial z} \tag{45}$$

$$\sigma_{zz} = \lambda \nabla^2 \phi + 2\mu \left(\frac{\partial^2 \phi}{\partial z^2} + \frac{\partial^2 \psi}{\partial x \partial z} \right)$$
 (46)

Step 5: Derive σ_{xz}

The shear stress is:

$$\sigma_{xz} = 2\mu\epsilon_{xz} = 2 \cdot \mu \cdot \frac{1}{2} \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right) = \mu \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right) \tag{47}$$

Computing Each Term

First term:

$$\frac{\partial u_x}{\partial z} = \frac{\partial}{\partial z} \left(\frac{\partial \phi}{\partial x} - \frac{\partial \psi}{\partial z} \right) = \frac{\partial^2 \phi}{\partial x \partial z} - \frac{\partial^2 \psi}{\partial z^2}$$
(48)

Second term:

$$\frac{\partial u_z}{\partial x} = \frac{\partial}{\partial x} \left(\frac{\partial \phi}{\partial z} + \frac{\partial \psi}{\partial x} \right) = \frac{\partial^2 \phi}{\partial z \partial x} + \frac{\partial^2 \psi}{\partial x^2}$$
 (49)

Adding the Terms

$$\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} = \frac{\partial^2 \phi}{\partial x \partial z} - \frac{\partial^2 \psi}{\partial z^2} + \frac{\partial^2 \phi}{\partial x \partial z} + \frac{\partial^2 \psi}{\partial x^2}$$
 (50)

$$=2\frac{\partial^2 \phi}{\partial x \partial z} - \frac{\partial^2 \psi}{\partial z^2} + \frac{\partial^2 \psi}{\partial x^2} \tag{51}$$

Final Expression for σ_{xz}

$$\sigma_{xz} = \mu \left(2 \frac{\partial^2 \phi}{\partial x \partial z} - \frac{\partial^2 \psi}{\partial z^2} + \frac{\partial^2 \psi}{\partial x^2} \right)$$
 (52)

$$\sigma_{xz} = \mu \left(2 \frac{\partial^2 \phi}{\partial x \partial z} + \frac{\partial^2 \psi}{\partial x^2} - \frac{\partial^2 \psi}{\partial z^2} \right)$$
 (53)

The fundamental relationships are:

$$\epsilon_{kk} = \nabla \cdot \mathbf{u} = \epsilon_{11} + \epsilon_{22} + \epsilon_{33} = \nabla^2 \phi$$
 (54)

$$\sigma_{zz} = \lambda \nabla^2 \phi + 2\mu \left(\frac{\partial^2 \phi}{\partial z^2} + \frac{\partial^2 \psi}{\partial x \partial z} \right) = \lambda (\partial_{xx} \phi + \partial_{zz} \phi) + 2\mu (\partial_{zz} \phi + \partial_{xz} \psi)$$
(55)

$$\sigma_{xz} = \mu \left(2 \frac{\partial^2 \phi}{\partial x \partial z} + \frac{\partial^2 \psi}{\partial x^2} - \frac{\partial^2 \psi}{\partial z^2} \right) = \mu \left(2 \partial_{xz} \phi + \partial_{xx} \psi - \partial_{zz} \psi \right)$$
(56)

Physical Interpretation

- The dilatation ϵ_{kk} depends only on the P-wave potential ϕ , confirming that only P-waves cause volume changes.
- The normal stress σ_{zz} involves both ϕ and ψ , showing coupling between P and SV waves at boundaries.
- The shear stress σ_{xz} also involves both potentials, demonstrating mode conversion.
- These expressions allow us to write boundary conditions entirely in terms of ϕ and ψ , which is essential for deriving the Zoeppritz equations.

5. Boundary Conditions at z=0

At an interface (say z = 0), we require:

Four Boundary Conditions:

- 1. Continuity of horizontal displacement: $u_x^{(1)} = u_x^{(2)}$
- 2. Continuity of vertical displacement: $u_z^{(1)} = u_z^{(2)}$
- 3. Continuity of shear stress: $\sigma_{xz}^{(1)} = \sigma_{xz}^{(2)}$
- 4. Continuity of normal stress: $\sigma_{zz}^{(1)} = \sigma_{zz}^{(2)}$

At a free surface (z = 0), we require:

1.
$$\sigma_{xz} = 0$$

$$2. \ \sigma_{zz} = 0$$

These conditions, expressed in terms of ϕ and ψ using the formulas derived above, lead to the famous Zoeppritz equations for reflection and transmission coefficients. These four equations also determine the four unknowns: A', B_1 , A_2 , B_2 .

6. Detailed Derivation of Boundary Conditions

Computing Derivatives

For $\phi_1 = A_1 e^{i(\omega t - k_x x + k_{z\alpha_1} z)} + A' e^{i(\omega t - k_x x - k_{z\alpha_1} z)}$ at z = 0:

$$\left. \frac{\partial \phi_1}{\partial x} \right|_{z=0} = -ik_x (A_1 + A') e^{i(\omega t - k_x x)} \tag{57}$$

$$\frac{\partial \phi_1}{\partial x} \Big|_{z=0} = -ik_x (A_1 + A') e^{i(\omega t - k_x x)}$$

$$\frac{\partial \phi_1}{\partial z} \Big|_{z=0} = ik_{z\alpha_1} (A_1 - A') e^{i(\omega t - k_x x)}$$
(57)

For $\psi_1 = B_1 e^{i(\omega t - k_x x - k_{z\beta_1} z)}$ at z = 0:

$$\left. \frac{\partial \psi_1}{\partial x} \right|_{z=0} = -ik_x B_1 e^{i(\omega t - k_x x)} \tag{59}$$

$$\left. \frac{\partial \psi_1}{\partial z} \right|_{z=0} = -ik_{z\beta_1} B_1 e^{i(\omega t - k_x x)} \tag{60}$$

Similarly for medium 2 at z = 0:

$$\phi_2 = A_2 e^{i(\omega t - k_x x + k_{z\alpha_2} z)} \tag{61}$$

$$\psi_2 = B_2 e^{i(\omega t - k_x x + k_{z\beta_2} z)} \tag{62}$$

$$\left. \frac{\partial \phi_2}{\partial x} \right|_{x=0} = -ik_x A_2 e^{i(\omega t - k_x x)} \tag{63}$$

$$\frac{\partial \phi_2}{\partial x} \Big|_{z=0} = -ik_x A_2 e^{i(\omega t - k_x x)}$$

$$\frac{\partial \phi_2}{\partial z} \Big|_{z=0} = ik_{z\alpha_2} A_2 e^{i(\omega t - k_x x)}$$
(63)

$$\left. \frac{\partial \psi_2}{\partial x} \right|_{x=0} = -ik_x B_2 e^{i(\omega t - k_x x)} \tag{65}$$

$$\frac{\partial \psi_2}{\partial x} \Big|_{z=0} = -ik_x B_2 e^{i(\omega t - k_x x)}$$

$$\frac{\partial \psi_2}{\partial z} \Big|_{z=0} = ik_{z\beta_2} B_2 e^{i(\omega t - k_x x)}$$
(65)

Boundary Condition 1: Horizontal Displacement

$$u_x^{(1)}\big|_{z=0} = u_x^{(2)}\big|_{z=0} \tag{67}$$

$$\frac{\partial \phi_1}{\partial x} - \frac{\partial \psi_1}{\partial z} \bigg|_{z=0} = \frac{\partial \phi_2}{\partial x} - \frac{\partial \psi_2}{\partial z} \bigg|_{z=0}$$
(68)

$$-ik_x(A_1 + A') - (-ik_{z\beta_1}B_1) = -ik_xA_2 - ik_{z\beta_2}B_2$$
(69)

Simplifying:

$$k_x(A_1 + A') - k_{z\beta_1}B_1 = k_x A_2 + k_{z\beta_2}B_2 \tag{70}$$

Rearrange:

$$k_x A' - k_{z\beta_1} B_1 - k_x A_2 - k_{z\beta_2} B_2 = -k_x A_1$$

Boundary Condition 2: Vertical Displacement

$$u_z^{(1)}\big|_{z=0} = u_z^{(2)}\big|_{z=0} \tag{71}$$

$$\left. \frac{\partial \phi_1}{\partial z} + \frac{\partial \psi_1}{\partial x} \right|_{z=0} = \left. \frac{\partial \phi_2}{\partial z} + \frac{\partial \psi_2}{\partial x} \right|_{z=0} \tag{72}$$

$$ik_{z\alpha_1}(A_1 - A') + (-ik_xB_1) = ik_{z\alpha_2}A_2 + (-ik_xB_2)$$
 (73)

Simplifying:

$$k_{z\alpha_1}(A_1 - A') - k_x B_1 = k_{z\alpha_2} A_2 - k_x B_2 \tag{74}$$

$$-k_{z\alpha_1}A' - k_xB_1 - k_{z\alpha_2}A_2 + k_xB_2 = -k_{z\alpha_1}A_1$$

Boundary Condition 3: Shear Stress

$$\sigma_{xz}^{(1)}\big|_{z=0} = \sigma_{xz}^{(2)}\big|_{z=0} \tag{75}$$

After computing second derivatives:

$$\mu_1[2\partial_{xz}\phi_1 + \partial_{xx}\psi_1 - \partial_{zz}\psi_1]_{z=0} = \mu_2[2\partial_{xz}\phi_2 + \partial_{xx}\psi_2 - \partial_{zz}\psi_2]_{z=0}$$
 (76)

Computing the second and mixed derivatives using equation 59 - 68:

$$\partial_{xz}\phi_1|_{z=0} = (-ik_x)(ik_{z\alpha_1})(A_1 - A')e^{i(\omega t - k_x x)} = k_x k_{z\alpha_1}(A_1 - A')e^{i(\omega t - k_x x)}$$
(77)

$$\partial_{xx}\psi_1|_{z=0} = (-ik_x)^2 B_1 e^{i(\omega t - k_x x)} = -k_x^2 B_1 e^{i(\omega t - k_x x)}$$
(78)

$$\partial_{zz}\psi_1|_{z=0} = (-ik_{z\beta_1})^2 B_1 e^{i(\omega t - k_x x)} = -k_{z\beta_1}^2 B_1 e^{i(\omega t - k_x x)}$$
(79)

$$\partial_{xz}\phi_2|_{z=0} = (-ik_x)(ik_{z\alpha_2}) A_2 e^{i(\omega t - k_x x)} = k_x k_{z\alpha_2} A_2 e^{i(\omega t - k_x x)}$$
(80)

$$\partial_{xx}\psi_2|_{z=0} = (-ik_x)^2 B_2 e^{i(\omega t - k_x x)} = -k_x^2 B_2 e^{i(\omega t - k_x x)}$$
(81)

$$\partial_{zz}\psi_2|_{z=0} = (ik_{z\beta_2})^2 B_2 e^{i(\omega t - k_x x)} = -k_{z\beta_2}^2 B_2 e^{i(\omega t - k_x x)}$$
(82)

Substitute the derivatives and cancel the common terms, this yields:

$$\mu_1[2k_xk_{z\alpha_1}(A_1 - A') + (k_{z\beta_1}^2 - k_x^2)B_1] = \mu_2[2k_xk_{z\alpha_2}A_2 + (k_{z\beta_2}^2 - k_x^2)B_2]$$
(83)

$$-2\mu_1 k_x k_{z\alpha_1} A' + \mu_1 (k_{z\beta_1}^2 - k_x^2) B_1 - 2\mu_2 k_x k_{z\alpha_2} A_2 - \mu_2 (k_{z\beta_2}^2 - k_x^2) B_2 = -2\mu_1 k_x k_{z\alpha_1} A_1$$

Multiply both sides by -1:

$$2\mu_1 k_x k_{z\alpha_1} A' + \mu_1 (k_x^2 - k_{z\beta_1}^2) B_1 + 2\mu_2 k_x k_{z\alpha_2} A_2 - \mu_2 (k_x^2 - k_{z\beta_2}^2) B_2 = 2\mu_1 k_x k_{z\alpha_1} A_1$$

Boundary Condition 4: Normal Stress

$$\left. \sigma_{zz1} \right|_{z=0} = \left. \sigma_{zz2} \right|_{z=0} \tag{84}$$

$$\lambda_1(\partial_{xx}\phi_1 + \partial_{zz}\phi_1) + 2\mu_1(\partial_{zz}\phi_1 + \partial_{xz}\psi_1)\big|_{z=0}$$

$$= \lambda_2(\partial_{xx}\phi_2 + \partial_{zz}\phi_2) + 2\mu_2(\partial_{zz}\phi_2 + \partial_{xz}\psi_2)\big|_{z=0}$$
(85)

Computing:

$$\partial_{xx}\phi_1|_{z=0} = -k_x^2(A_1 + A')e^{i(\omega t - k_x x)}$$
(86)

$$\partial_{zz}\phi_1|_{z=0} = -k_{z\alpha_1}^2 (A_1 + A')e^{i(\omega t - k_x x)}$$
(87)

$$\partial_{xz}\psi_1|_{z=0} = -k_x k_{z\beta_1} B_1 e^{i(\omega t - k_x x)}$$
(88)

$$\partial_{xx}\phi_2|_{z=0} = -k_x^2 A_2 e^{i(\omega t - k_x x)}$$
 (89)

$$\partial_{zz}\phi_2|_{z=0} = -k_{z\alpha_2}^2 A_2 e^{i(\omega t - k_x x)}$$
 (90)

$$\partial_{xz}\psi_2|_{z=0} = k_x k_{z\beta_2} B_2 e^{i(\omega t - k_x x)} \tag{91}$$

After substitution and simplification:

$$\lambda_1(-k_x^2 - k_{z\alpha_1}^2)(A_1 + A') + 2\mu_1(-k_{z\alpha_1}^2)(A_1 + A') - 2\mu_1 k_x k_{z\beta_1} B_1$$

$$= \lambda_2(-k_x^2 - k_{z\alpha_2}^2)A_2 + 2\mu_2(-k_{z\alpha_2}^2)A_2 + 2\mu_2 k_x k_{z\beta_2} B_2 \quad (92)$$

This can be rewritten as:

$$[\lambda_1(k_x^2 + k_{z\alpha_1}^2) + 2\mu_1 k_{z\alpha_1}^2] (A_1 + A') + 2\mu_1 k_x k_{z\beta_1} B_1$$

$$= [\lambda_2(k_x^2 + k_{z\alpha_2}^2) + 2\mu_2 k_{z\alpha_2}^2] A_2 - 2\mu_2 k_x k_{z\beta_2} B_2 \quad (93)$$

$$\left[\lambda_{1}(k_{x}^{2}+k_{z\alpha_{1}}^{2})+2\mu_{1}k_{z\alpha_{1}}^{2}\right]A'+2\mu_{1}k_{x}k_{z\beta_{1}}B_{1}-\left[\lambda_{2}(k_{x}^{2}+k_{z\alpha_{2}}^{2})+2\mu_{2}k_{z\alpha_{2}}^{2}\right]A_{2}+2\mu_{2}k_{x}k_{z\beta_{2}}B_{2}$$

$$=-\left[\lambda_{1}(k_{x}^{2}+k_{z\alpha_{1}}^{2})+2\mu_{1}k_{z\alpha_{1}}^{2}\right]A_{1} \quad (94)$$

Let:

$$M_1 = \lambda_1 (k_x^2 + k_{z\alpha_1}^2) + 2\mu_1 k_{z\alpha_1}^2$$

$$M_2 = \lambda_2 (k_x^2 + k_{z\alpha_2}^2) + 2\mu_2 k_{z\alpha_2}^2$$

$$M_1A' + 2\mu_1k_xk_{z\beta_1}B_1 - M_2A_2 + 2\mu_2k_xk_{z\beta_2}B_2 = -M_1A_1$$

Matrix Form (Zoeppritz System)

Collecting the four equations from the boundary conditions into matrix form, $\mathbf{M} x = \mathbf{b}$, where \mathbf{b} is the right-hand vector containing the incident-wave terms (proportional to A_1). Explicitly the coefficient matrix (rows are eqns from the BCs, columns unknowns $[A', B_1, A_2, B_2]$) is:

$$\begin{pmatrix} k_x & -k_{z\beta 1} & -k_x & -k_{z\beta 2} \\ -k_{z\alpha 1} & -k_x & -k_{z\alpha 2} & k_x \\ 2\mu_1 k_x k_{z\alpha 1} & \mu_1 (k_x^2 - k_{z\beta 1}^2) & 2\mu_2 k_x k_{z\alpha 2} & -\mu_2 (k_x^2 - k_{z\beta 2}^2) \\ M_1 & 2\mu_1 k_x k_{z\beta 1} & -M_2 & 2\mu_2 k_x k_{z\beta 2} \end{pmatrix} \begin{pmatrix} A' \\ B_1 \\ A_2 \\ B_2 \end{pmatrix} = \begin{pmatrix} -k_x A_1 \\ -k_{z\alpha 1} A_1 \\ 2\mu_1 k_x k_{z\alpha 1} A_1 \\ -M_1 A_1 \end{pmatrix}$$

Divide the entire system by A_1 :

$$\begin{bmatrix} k_x & -k_{z\beta 1} & -k_x & -k_{z\beta 2} \\ -k_{z\alpha 1} & -k_x & -k_{z\alpha 2} & k_x \\ 2\mu_1 k_x k_{z\alpha 1} & \mu_1 (k_x^2 - k_{z\beta 1}^2) & 2\mu_2 k_x k_{z\alpha 2} & -\mu_2 (k_x^2 - k_{z\beta 2}^2) \\ M_1 & 2\mu_1 k_x k_{z\beta 1} & -M_2 & 2\mu_2 k_x k_{z\beta 2} \end{bmatrix} \begin{pmatrix} R_{PP} \\ R_{PS} \\ T_{PP} \\ T_{PS} \end{pmatrix} = \begin{pmatrix} -k_x \\ -k_{z\alpha 1} \\ 2\mu_1 k_x k_{z\alpha 1} \\ -M_1 \end{pmatrix}$$

Where:

$$M_1 = \lambda_1 (k_x^2 + k_{z\alpha_1}^2) + 2\mu_1 k_{z\alpha_1}^2$$

$$M_2 = \lambda_2(k_x^2 + k_{z\alpha_2}^2) + 2\mu_2 k_{z\alpha_2}^2$$

The reflection and transmission coefficients are therefore:

$$R_{PP} = \frac{A'}{A_1}, \qquad R_{PS} = \frac{B_1}{A_1}, \qquad T_{PP} = \frac{A_2}{A_1}, \qquad T_{PS} = \frac{B_2}{A_1}.$$

This 4×4 linear system is the general **Zoeppritz equation** for a P-wave incident on a plane elastic interface. Solving for RC and TC gives:

$$\begin{pmatrix} R_{PP} \\ R_{PS} \\ T_{PP} \\ T_{PS} \end{pmatrix} = \mathbf{M}^{-1} \mathbf{b}.$$

Where:

$$\mathbf{M} = \begin{pmatrix} k_x & -k_{z\beta1} & -k_x & -k_{z\beta2} \\ -k_{z\alpha1} & -k_x & -k_{z\alpha2} & k_x \\ 2\mu_1 k_x k_{z\alpha1} & \mu_1 (k_x^2 - k_{z\beta_1}^2) & 2\mu_2 k_x k_{z\alpha2} & -\mu_2 (k_x^2 - k_{z\beta_2}^2) \\ M_1 & 2\mu_1 k_x k_{z\beta1} & -M_2 & 2\mu_2 k_x k_{z\beta2} \end{pmatrix}$$

$$\mathbf{b} = \begin{pmatrix} -k_x \\ -k_{z\alpha1} \\ 2\mu_1 k_x k_{z\alpha1} \\ -M_1 \end{pmatrix}$$

The Zoeppritz system of equation above in its potential-based form can be transformed into a more compact form, similar to the one presented in the classical book by Aki and Richards

7. Special Case: P-Sv R/T Coefficients at Free Surface (Earth's Surface)

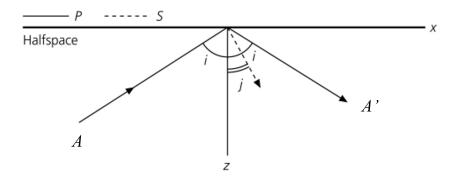


Figure 2: P-SV R/T Coefficients at Earth Surface

The free surface (e.g., the Earth's surface) is a special case where Medium 2 is a vacuum. This simplifies the problem because there are no transmitted waves and the boundary conditions become **stress-free**.

At Earth's surface, the boundary conditions simplify to **stress-free conditions**:

$$\sigma_{xz}\big|_{z=0} = 0, \quad \sigma_{zz}\big|_{z=0} = 0 \tag{95}$$

This gives us two equations for two unknowns (A', B_1) :

Free Surface Boundary Conditions

- Medium 1: Elastic solid with parameters $\alpha, \beta, \rho, \lambda, \mu$
- Medium 2: Vacuum (z > 0)
- Boundary conditions at z = 0: $\sigma_{zz} = 0$ and $\sigma_{xz} = 0$

Shear Stress = 0

From Boundary Condition 3 with medium 2 absent:

$$\mu[2k_xk_{z\alpha}(A_1 - A') + (k_{z\beta}^2 - k_x^2)B_1]$$
(96)

$$2k_x k_{z\alpha} (A_1 - A') + (k_x^2 - k_{z\beta}^2) B_1 = 0$$
(97)

Dividing by k_x^2 :

$$2\frac{k_{z\alpha}}{k_x}(A_1 - A') + \left(\frac{k_{z\beta}^2}{k_x^2} - 1\right)B_1 = 0$$
(98)

Defining:

$$r_{\alpha} = \frac{k_{z\alpha}}{k_x} = \cot i_{\alpha}$$
 and $r_{\beta} = \frac{k_{z\beta}}{k_x} = \cot i_{\beta}$

Note that $\frac{k_{z\beta}^2}{k_x^2} = r_{\beta}^2$, so:

$$2r_{\alpha}(A_1 - A') + (r_{\beta}^2 - 1)B_1 = 0$$
(99)

Normal Stress = 0

From **Boundary Condition 4** with medium 2 absent:

$$\lambda(k_x^2 + k_{z\alpha}^2)(A_1 + A') + 2\mu(k_{z\alpha}^2)(A_1 + A') + 2\mu k_x k_{z\beta} B_1 = 0$$

$$[\lambda(k_x^2 + k_{z\alpha}^2) + 2\mu k_{z\alpha}^2](A_1 + A') + 2\mu k_x k_{z\beta} B_1 = 0$$
(100)

We can rewrite:

$$[\lambda(k_x^2 + k_{z\alpha}^2) + 2\mu k_{z\alpha}^2](A_1 + A') = -2\mu k_x k_{z\beta} B_1$$
(101)

Dividing by k_x^2 :

$$\left[\lambda \left(1 + \frac{k_{z\alpha}^2}{k_x^2}\right) + 2\mu \frac{k_{z\alpha}^2}{k_x^2}\right] (A_1 + A') = -2\mu \frac{k_{z\beta}}{k_x} B_1$$
 (102)

$$[\lambda(1+r_{\alpha}^{2})+2\mu r_{\alpha}^{2}](A_{1}+A') = -2\mu r_{\beta}B_{1}$$
(103)

This can be rewritten as:

$$\lambda(1+r_{\alpha}^{2})(A_{1}+A')+2\mu r_{\alpha}^{2}(A_{1}+A')+2\mu r_{\beta}B_{1}=0$$

$$\lambda(1+r_{\alpha}^{2})(A_{1}+A')+2\mu\left(r_{\alpha}^{2}(A_{1}+A')+r_{\beta}B_{1}\right)=0$$
(104)

Solving for Reflection Coefficients

System of Equations

From Equation 99:

$$2r_{\alpha}(A_1 - A') + (r_{\beta}^2 - 1)B_1 = 0$$

$$A_1 - A' = -\frac{(r_{\beta}^2 - 1)}{2r_{\alpha}} B_1 = \frac{(1 - r_{\beta}^2)}{2r_{\alpha}} B_1$$
(105)

From Equation 104:

$$\lambda(1+r_{\alpha}^{2})(A_{1}+A')+2\mu\left(r_{\alpha}^{2}(A_{1}+A')+r_{\beta}B_{1}\right)=0$$

$$\left[\lambda(1+r_{\alpha}^{2})+2\mu r_{\alpha}^{2}\right] (A_{1}+A')=-2\mu r_{\beta}B_{1}$$

$$A_1 + A' = \frac{-2\mu r_\beta B_1}{\lambda (1 + r_\alpha^2) + 2\mu r_\alpha^2}$$
(106)

Solving by Elimination Method

Let:

$$S = A_1 + A' \quad \text{(sum)} \tag{107}$$

$$D = A_1 - A' \quad \text{(difference)} \tag{108}$$

Then: $A_1 = (S + D)/2$ and A' = (S - D)/2

From Eq. 105:

$$D = \frac{(1 - r_{\beta}^2)}{2r_{\alpha}} B_1 \tag{109}$$

From Eq. 106:

$$S = -\frac{2\mu r_{\beta}}{\lambda(1 + r_{\alpha}^2) + 2\mu r_{\alpha}^2} B_1 \tag{110}$$

Therefore:

$$A_1 = \frac{1}{2} \left[\frac{(1 - r_\beta^2)}{2r_\alpha} - \frac{2\mu r_\beta}{\lambda (1 + r_\alpha^2) + 2\mu r_\alpha^2} \right] B_1$$
 (111)

$$A' = \frac{1}{2} \left[-\frac{2\mu r_{\beta}}{\lambda (1 + r_{\alpha}^2) + 2\mu r_{\alpha}^2} - \frac{(1 - r_{\beta}^2)}{2r_{\alpha}} \right] B_1$$
 (112)

Final Expressions

After significant algebraic manipulation, the reflection coefficients are:

P-to-P Reflection Coefficient:

$$R_P = \frac{A'}{A_1} = \frac{4r_{\alpha}r_{\beta} - (r_{\beta}^2 - 1)^2}{4r_{\alpha}r_{\beta} + (r_{\beta}^2 - 1)^2}$$
(113)

P-to-SV Conversion Coefficient:

$$R_{SV} = \frac{B_1}{A_1} = \frac{4r_{\alpha}(1 - r_{\beta}^2)}{4r_{\alpha}r_{\beta} + (r_{\beta}^2 - 1)^2}$$
(114)

where:

$$r_{\alpha} = \frac{k_{z\alpha}}{k_{x}} = \cot i_{\alpha} = \frac{\cos i_{\alpha}}{\sin i_{\alpha}} \tag{115}$$

$$r_{\beta} = \frac{k_{z\beta}}{k_{x}} = \cot i_{\beta} = \frac{\cos i_{\beta}}{\sin i_{\beta}} \tag{116}$$

Note: The angles i_{α} and i_{β} are measured from the vertical (normal to the surface).

Remember the relations:

$$\bullet \ \lambda + 2\mu = \rho\alpha^2$$

•
$$\mu = \rho \beta^2$$

$$\bullet \ k_x^2 + k_{z\alpha}^2 = \omega^2/\alpha^2 = k_\alpha^2$$

8. Physical Interpretation

Key Features

- 1. **Mode Conversion**: Unlike SH waves, P-waves generate both P and SV reflected waves at a free surface.
- 2. Critical Angles: When $i > i_c = \sin^{-1}(\alpha/\beta)$, the SV wave becomes inhomogeneous (evanescent).
- 3. Amplitude Behavior:
 - At normal incidence (i=0): $r_{\alpha} \to \infty$, $r_{\beta} \to \infty$, giving $R_P = -1$, $R_{SV} = 0$
 - At grazing incidence $(i \to 90)$: $r_{\alpha} \to 0$, $r_{\beta} \to 0$, giving $R_P \to 1$, $R_{SV} \to 0$
 - Maximum P-to-SV conversion occurs at intermediate angles
- 4. Energy Conservation:

$$|R_P|^2 + |R_{SV}|^2 \frac{I_{\beta} \cos j_{\beta}}{I_{\alpha} \cos i_{\alpha}} = 1 \tag{117}$$

where $I = \rho v$ is the impedance.

Special Values

At normal incidence $(i_{\alpha} = 0)$, using L'Hôpital's rule or direct evaluation:

$$R_P(0) = -1$$
 (phase reversal) (118)

$$R_{SV}(0) = 0$$
 (no mode conversion) (119)

At the critical angle $i_c = \sin^{-1}(\alpha/\beta)$:

- The SV wave grazes along the surface $(i_{\beta} = 90)$
- $r_{\beta} = 0$
- Maximum mode conversion occurs

9. Shuey's Approximation (Linearized AVO)

For small contrasts across an interface and weak angles, the P-wave reflection coefficient can be approximated:

$$R(\theta) = R(0) + G\sin^2\theta + F(\tan^2\theta - \sin^2\theta)$$
(120)

where:

Intercept (normal incidence reflectivity):

$$R(0) = \frac{1}{2} \left(\frac{\Delta \rho}{\rho} + \frac{\Delta \alpha}{\alpha} \right) \tag{121}$$

Gradient (AVO slope):

$$G = \frac{\Delta \alpha}{2\alpha} - \frac{2\beta^2}{\alpha} \left(\frac{\Delta \rho}{\rho} + \frac{2\Delta \beta}{\beta} \right) \tag{122}$$

Large-angle term:

$$F = \frac{\Delta \alpha}{2\alpha} \tag{123}$$

Here:

- $\Delta \rho = \rho_2 \rho_1$, $\Delta \alpha = \alpha_2 \alpha_1$, $\Delta \beta = \beta_2 \beta_1$
- $\rho = (\rho_1 + \rho_2)/2$, $\alpha = (\alpha_1 + \alpha_2)/2$, $\beta = (\beta_1 + \beta_2)/2$
- θ is the angle of incidence

This approximation is widely used in seismic exploration for amplitude-versus-offset (AVO) analysis to detect hydrocarbons and characterize lithology.

Physical Meaning of AVO Parameters

- R(0): Measures the impedance contrast at normal incidence
- G: Captures the angle-dependent behavior, sensitive to fluid content and Poisson's ratio changes
- F: Important at large angles, related to P-wave velocity contrast

Summary

The P-SV problem is significantly more complex than the SH problem due to:

- 1. Mode conversion between P and SV waves
- 2. Coupling through both displacement and stress boundary conditions
- 3. Four coupled equations instead of two
- 4. Angle-dependent behavior that depends on both α and β

The exact Zoeppritz equations provide the complete solution, while Shuey's approximation offers a practical, linearized alternative for seismic interpretation.