Green’s Function for the 2D SH Wave

Equation with a Line Source

OYEKAN, Hammed A.

June 3, 2025

1 Derivation of the 2D Green’s Function

for the Wave Equation

The 2D SH wave equation in stress-displacement formulation is given as:

1. Equation of motion:
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2. Constitutive relations:
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Where:
e u, is the displacement in the y direction
e p is the density
e /i is the shear modulus
o f, = Ad(x)d(2)d(t) is the source term (a line source along y-axis)

o f,=(0,A46(x)d(2)d(t),0)



A is a constant having the dimensions of impulse per unit length. Only the y component of

displacement is excited by this source.

2 Substitute Constitutive Relations into

Equation of Motion

First, let’s substitute the stress components into the equation of motion:
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Assuming p is constant, this simplifies to:
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Divide both sides by p:
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Let B = \/iu/p (shear wave velocity), and A = A/p:
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We seek to find the causal Green’s function wu,(z, 2, t) for this equation, i.e. the response to

AS(2)3(2)3(1).

We define the Green’s function G(x, z,t) as:
uy(z, 2,t) = G(z, 2,t)

%%f — B2V2G = Ad(x)6(2)d(t)



3 Spatial Fourier Transform

Apply the 2D spatial Fourier transform in z, z. Let

krw,kzz,t // (x,z,t)e —ilkamtha2) g0 7

with inverse

1 < :
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Under this transform, 25 + 25 = —k? with &2 = k2 + k2, and §(z)d(z) = 1.

The wave equation in k-space becomes

092G A
S+ ORG = (o).

4 Solution to the ODE in Time

The given equation is a second-order partial differential equation (PDE) for G(t) with respect
to time ¢, and it can be treated as an ordinary differential equation (ODE) in ¢ since there

are no other independent variables present. The equation is:
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This is an inhomogeneous ODE due to the Dirac delta function 6(¢). To solve it, we proceed

as follows:

1. Solve the Homogeneous Equation

First, consider the homogeneous version (without the delta function):

a*G

s + B*K*G = 0.

The characteristic equation is:



4+ B2k =0 = r = +ipk.

Thus, the general solution to the homogeneous equation is:

Gh(t) = C cos(Bkt) + Cysin(Bkt),

where C; and C5 are constants.

2. Find a Particular Solution for the Inhomogeneous Equation

The inhomogeneous term is %5(7&). To handle the delta function, integrate the original

equation over a small interval around ¢t = 0 (from ¢ = —e to t = +¢):
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The first integral gives the jump in the first derivative:
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since G is continuous at t = 0 (so its integral over an infinitesimal interval vanishes), and

[ 6(t)dt = 1. Thus:
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Assuming G is initially at rest for t < 0 (i.e., G(t) = 0 and % =0 for t < 0), we have:

iG
dt
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3. Apply Initial Conditions

For t > 0, the solution is the homogeneous solution:

G(t) = Cy cos(Bkt) + Cysin(Bkt).



Apply the initial conditions at t = 07:

e Continuity of G at ¢t = 0 implies G(01) = 0, so:

C’1:O.

e The jump condition for the derivative gives:
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Thus, the solution for ¢t > 0 is:
A
G(t) = — sin(pkt).
(1) = 2 sin(Ak)

For t < 0, G(t) = 0.

4. Final Solution
The solution can be written compactly using the Heaviside step function H(t):

G(t) = pﬂ% sin(Bkt) H(t).

Verification
Differentiate G(t):
dG A A A
— = —cos(Bkt) H(t) + —sin(Bkt)o(t) = — cos(Bkt) H(t),
= 5 cos{Bk) H(E) + 2 sin(Bk)5(2) = 2 cos(ak) H (1)
since sin(fkt)d(t) = 0. Differentiate again:
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Substitute into the original equation:

k. 5ty 5 (2 sn(oiny e) = 2
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The terms involving sin(8kt) cancel, leaving:

which confirms the solution is correct.

Final Answer

The solution to the ODE is:

A
G(t) = p}?k sin(Skt)

H(t).

w = Bk, so

j4%

G(t) = 4 sin(wt) H(t).

5 Inverse Transform and Bessel Integral

We now invert to real space.

Using polar coordinates in k:

k. = k cos ¢,

k., = ksin ¢,

d*k = dk,dk, = k dk d¢, and

k-1 = krcos(¢ — 0) where r = /22 + 22,
= (rcosf,rsind)

k = (kcos ¢, ksin ¢)

dk, dk, = kdkde

The inverse transform gives
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G(x,2,t) = / / sin ﬁ (BR) pikrcosto-0) 1, gi; g,

Evaluate the Angular Integral

Simplify the angular integral using the identity:
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where Jj is the Bessel function of the first kind.

G(z,z,t) = H(t) /000 Jo(kr) sin(Skt) dk

Evaluate the Radial Integral

The remaining radial integral is a standard Bessel-sine integral. This integral can be evalu-
ated using tables of Hankel transforms or contour integration. The radial integral evaluate

to:

o L for ft > r
/ sin(Bkt)Jo(kr)dk = { VA&
0 0 otherwise (8t < r)

Thus the integral vanishes unless St > r; for t > r it equals 1/4/(ct)? — r2. Including the

Heaviside step for causality, one obtains:

H(pt—r)

/o Jo(kr) sin(Skt) dk = W

Substituting back gives the space-time Green’s function.

6 Final Green’s Function (Time Domain)

Combining all results:
H(t) H(Bt —
G(z,z,t) = () H r)
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By the Heaviside function, it follows that:
e For ¢t > 0 and r < (¢, the function is finite and decays as r approaches ft.
e For t < 0 or r > pt, the function is zero due to the Heaviside step functions.

Final Simplified Form:

if t >0 and r < fSt,

1
G(x,z,t) = { AV B

0 otherwise.

By combining the Heaviside Functions in equation 1:
e H(t)H(St —r) is equivalent to H(t — r/f3) because:
— For t > 0 and r < St,t > r/p.
— Thus, H(t — /) captures both conditions.

So the final simplified form of equation 1 is:

1 H(t-—
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This result agrees with the well-known 2D wave Green’s function (for 5 = 1)

H(t—r)

G([E, Z,t) = m

Replacing the factor A/p. The factor 1/(2wpf3) ensures the correct amplitude for the given

source strength A.

Thus in summary, the time-domain Green’s function is:

uy(z,2,t) = G(z,2,t) = A H(Bt—r)

- 2mpB\/(BE)? — 12

which is valid for » = /22 4 22. This is the retarded (causal) solution of the 2D SH

wave equation for an impulse line source.




7 Key Points

The solution satisfies:
e G =0fort < r/p (causality). This means the solution is zero before the wave arrives.

Integrable singularity at the wavefront ¢t = r/f3

Wavefront propagates at speed

Amplitude decays as 1/+/ for large t

The solution is cylindrically symmetric (depends only on r)

8 Frequency-Domain (Hankel) Form

Equivalently, one can work in the frequency domain by taking the Fourier transform in time.
Writing
o0 .
uy(z, 2,t) = / iy (2, 2,w)e”™" dw,

oo

the equation becomes the 2D Helmholtz equation

w? A
V2, + — 1, = ——=06(7)d(2).
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The fundamental solution of (V2 4+ k?)G = —¢ in two dimensions is well known to be

proportional to the Hankel function Hél). In fact one finds

iy(rw) = = Grw), Glrw) = ~HD (ﬂ) |

Hence

- 1A wr
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which represents an outgoing cylindrical wave. This matches the known 2D Helmholtz

Green’s function

Glksr) = <H" (kr)
(with & = w/f and including the A/(pS?) prefactor).
Where:
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is the Hankel function of the first kind, order zero

- k = w/p is the wavenumber

- r = /22 + 22 is the radial distance from the source

This Hankel function describes outgoing cylindrical waves—perfect for 2D problems.

One may verify that the inverse Fourier transform of this s in w recovers the time-domain

result above.

Asymptotic Forms of Hél)(kr). k =

=|E

1. Near-field (Small argument: kr < 1)

As kr — 0, the Hankel function has the asymptotic expansion:

21 k
H(()l)(kr) ~ ?Z <1Il (77“) +v— 2%) , 7 is Euler-Mascheroni constant

Thus:
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Simplifying:

~near ~ A kr LT
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— Logarithmic divergence as r — 0

e Interpretation:

— This is a complex-valued, non-radiating field (reactive field)

— Dominated by evanescent energy and stored energy near the source

2. Far-field (Large argument: kr > 1)

As kr — oo, the Hankel function behaves like:



So:

~far ~ iA 2 i(kr—m/4)
i, (1, w) =~ 4/)52\/%6

— Describes an outgoing cylindrical wave

e Interpretation:

— Amplitude decays as r~'/2, slower than 3D 7!

— The phase varies linearly with kr, indicating radiating energy
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