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Governing Wave Equation

2D SH Wayve:
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p: Mass density (kg/m?)

uy(z,t): Transverse displacement field (m)

0ys: Shear stress component (Pa)

fy: External force density (N/m?)

x: Spatial coordinate along propagation direction

e {: Time coordinate

The Cagniard—De Hoop Method

Given the 2D SH Wave Equation:



82uy _ 0*u, N 0?uy,
3152 0x? 022

fy = (0, Ad(x)d(2)d(t), 0) is the line source. Only the y— component is excited by this

source. A is a constant having the dimension of impulse per unit length

8 u,  (Pu, 0%u,
Pop —H ( 52 + 522 + Ad(x)d(2)d(t).

Since = \/E . The equation becomes:

82 A
s = BV + - 0()8(2)8(0), g
where:
0? 0?
2 _ _ _
V= 02 * 022

we seek to find the causal Green’s function w,(z, z,t) for the wave equation in (3) i.e the

response to the source Ad0(x)d(z)d(t).

Step 1: Take the Laplace Transform with Respect to Time

The Laplace transform of a function f(t) is defined as:
L{f(t) / f(t)e*tdt.

Apply the Laplace transform to both sides of the equation. We will use the following

properties of the Laplace transform:

1. L {6;“;’} = s, — suy,(z,2,0) — 8;;’ (x,2,0).
2. L{6(t)} = 1.
Assuming initial conditions are zero:

0
uy(z,2,0) =0, %(x,z,O) =0



The Laplace transform simplifies the equation to:

_ 9*u,  0*u
p(s°0,) = p ( 3x2y + 8z2y> + Ao(z)0(2).

2~ 2~
o*u,  0°uy

ps2il, = ( 52 T 5 ) + Ad(z)0(2).

Rearrange the Equation

Divide both sides by p to isolate ,:

o _ w0, A
s“Uy(z, 2, 8) = p (8372 + 5.2 + p5(x)5(z).

2~ 2~
s, (z, 2, 8) = B2 (8 oy 0 uy) A

92 T 9.2 + ;(5(@(5(2)

Final Form of the Laplace-Transformed Equation

0%, %u, s A

Step 2: Take the Fourier Transform in the x-Direction

The Fourier transform of a function f(x) is defined as:
F{f@)} = fh) = [ flaje e

Apply the Fourier transform to both sides of the equation. We will use the following

properties of the Fourier transform:

0%, 2
1. ]:{ 5 } = —kiuy.

0% iy (o . .
2. F {W;} = 5.2 (since the FT is taken only in ).
3. Ffiy} = 1.
4. F{é(z)} = 1.

Applying the Fourier transform to the equation:

F{Oub e F (S0 - S r ) - - L)



Substituting the FT properties:

— k2, +
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2
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Combine Like Terms

Combine the terms involving ﬁy:

0% s2\ 2 A

Let k? = k2 + 2—2, then the equation simplifies to:

82{2y 2 2 A
52 " (k,s)uy,(k, z,s) = —Wc;

(2).

82

K2 (k,s) = k2 + 52

with Re(k) > 0 for boundedness.

Step 3: Solve the ODE in the z-Direction

The equation above is a second-order ordinary differential equation (ODE) in z with a

delta function source.

The general solution for z # 0 is:

Homogeneous Equation Solution (without the source term on
the RHS)

The homogeneous equation is:

This is a linear second-order ODE with constant coefficients. The general solution is:

Cre* 4+ Che ™, 2 <0

Kz —Kz
036 + 046 N

ﬁ?om(z) =
z>0

But we require boundedness at infinity as |z| — oo:



e Asz— —o00,e" 500 = Cy=0
e Asz — 400, e 00 = (C3=0

So the physically admissible (bounded) solution becomes:

Cie*, 2<0

ﬁ;‘om(z) =
C4€_HZ, z>0

Apply Discontinuity (Jump) Condition from J-function
To account for the delta function at z = 0, we impose continuity and a jump condition
in the derivative:

1. Continuity at z = 0:

1y (07) = 1y (0%).

lim @, = lim @,
z—0— z—0t

0120450

2. Jump condition in the derivative: Integrate the ODE across an infinitesimally

small interval around z = 0:

Ply,  4- A
022 —“Uy——ﬁ (2)
0t a2%* o+ o+
0", 2/ - A/
dz — dz = —— d(2)dz.
o 2= uydz e (z)dz



The first integral gives the jump in the derivative:

B o,

0z

A

01, A
pB?

0z

0+ 0~

The second integral vanishes because fey is continuous.
For a symmetric solution (assuming decay as |z| — o0):
e For 2 > 0: ,(2) = Ce™
e For z < 0: 4,(2) = Ce™

Applying the jump condition:

aﬁy _ —k(0) aﬁy _ x(0)
5% = —kCe a3, = rCe™".
o+ 0~
Dy O
4 =—kC, = =kC.
0z St "
0+ 0~
Thus: 4 4
—kC—k(C =—— = —2kC=——.
pB? pB?
Solving for C":
A
 2Kp3?

Final Solution in Fourier-Laplace Space

A
2kp3?

—rlz]

ﬁy(kx,z,s) =

This is the Fourier-Laplace transformed displacement field ﬁy(kx,z,s) for the 2D SH

wave equation under a point force source.

/ 2
K= k‘%—l—%

k encodes the wavenumber k, and laplace parameter (s), ensuring the solution decays

where:

exponentially away from the source, e #*|. The choice Re(x) > 0 ensures boundedness

and causality (no energy from z = +00)



Step 4: Take the Inverse Spatial Fourier Transform

of the Fourier-Laplace Transformed Solution

Given Fourier-Laplace Space Solution

- A —k|z
uy(k‘x,z, S) = 2/€p626 | ‘a
where
52
The solution becomes: "
A e—li z
Uy(k’x,z, S) - 2p52 ' K

Inverse Fourier Transform in z (k, — x)

The inverse Fourier transform is defined as:

N 1 oo .
(2,2, 8) = F iy (ky, 2,8)} = —/ i (2, 8)e™ d,.

Substitute ,:

N A 0 phlel ik
Uy(z,2,8) = 47TP52/ p ek dk,. (4)

Simplify the Integral

The integral to solve is:
0o —klz|
I= / £ etk g,

o K

Let k = \/k2 + a2, where o® = 2—22 The integral becomes:

oo e—\/k%+a2|z|
oo VK24 a?

To simplify the integral, I, above, we can use a known integral representation, or we

I= e dk..

could manipulate the integral path.

Using Known Integral Results

The integral above is a known integral representation of the modified Bessel function of

the second kind Kj. This integral is a standard form whose result is known from tables



of Fourier transforms or Green’s functions. The result is:

0o 6—\/k£+a2|z\
oo K2+ a?

where K, is the modified Bessel function of the second kind of order zero. However,

eReT ke, = 2Ko(av/x? + 22),

another common representation is:

00 e—\/k%+a2|z\
oo K2+ a2

where H((]l) is the Hankel function of the first kind. But for decaying exponentials, the

et dk, = mHSD (iav/z? + 22),

correct form is:

I =2K, (a\/xQ + 22> .

Thus, the inverse Fourier transform yields:

Uy(x,2,8) = Py 2K <a\/x2 + 22> . (5)
where:
2
o = @

The final Laplace-transformed solution is:

A

ﬁy(l’,Z,S) = W

K, (wm) (6)

Integral Manipulation

Substitute k, = isp into the inverse F'T in equation 4 before explicitly solving it. This
substitution will also make p complex since k, is real. By so doing, we intend to param-

eterise the solution for further analysis (for an inverse Laplace transform).

[e.9]

A 1 A .
iy (x, z,8) = F ke, 2,8)} = %/ Uy (ky, 2, 5)e™" dk,.

—00

1 oo

=5 - Uy (isp, 2, 5)e" P (isdp).



The Fourier-Laplace solution before the inverse Fourier transform was:

. A e rl 52
U kxa ) = : ) - k2 9
Uy (ks, 2, 5) 207 n k= kit 52
2 / 2 1
K= (isp)2+%: —82p2+%:swﬁ— 2.

Letn:,/%—pQ,m/{:sn.

ﬁy(isp, 2,8) =

A 6—377‘2|
2082 sy

The inverse Fourier transform of 4, would involve an integral over p and it is complex:

1

Uy(z, 2,8) = %/ u, (isp, z, s)e =" d(isp).

The integral over k, € [—00, 00| will maps to p € [ico, —ico] because when:

k +00

ky =400, p=—=— =—ioc0
18 18
k., — ,
k, = —o0, p:,—:,—oozzoo
is is
So,
is [ Ae~onle—sm
- _ s Ae e ™
uy(ZL’, Z, S) o [rloo 2p5287’] p
A [0 jesprtnlz) —A [T e sprtlz)
ty(z,2,8) = —— —dp:—/ —dp. (7)
! AmpB? J fine U Ampf? J i U
1 2 _ M
n=y/z —p® and §*=t
B p
Let’s try to simplify equation 7 even further. Since:
R —A Fico ; o—s(pr+nlz])
R e

It happens that if we decompose the integrand in equation 7 into even (E) and odd (O)



parts with respect to p, we have: (see Box 3.0 below for derivation.)

+ico _ s —s(pz+n)z|) +ico ,—s(pz+n|z|)
/ e - dp = 2Im {/ e - dp}
—ico n 0 n

So,

A /—i-ioo _iefs(p:p+n|z|) A { +ico efs(pac+17|z|)
Uy (x,z,8) = —dp=——1Im / —dp 8
y ) Arpp? |, n 27 p[32 0 U] &

100

Step 5: The Cagniard Path and Deformation

Now, we will try to force equation 8 into the form of a laplace transform. To achieve this,

we must investigate the path C' in the complex p— plane for which px + n|z| is real

let:

1
t = pr +n|z| = pr + |2| @—pQ (9)

Note: C'is the cagniard path given by p = p(t), where ¢ is real and positive.

Solving for p, we get: (see Box 1.0 below for derivation)

xt £ |z| 1;—; —t2
R2

p= (10)

82 R
e , t> 3
p g
zt—|z| 1;—227152 R
o t< 1

Thus, for t < % the integrand in equation 8 is purely real, contributing nothing to the

imaginary part. However, for ¢t > £, the path C ensures t increase monotonically.

~ A e—s(pz+n|z[)
Uy(z, 2,8) = G Im {/C — dp} (11)

Differentiate t in equation 9 above with respect to t and make % (see Box 2.0 below

for derivation)

10



1
2z — D
dp _ A _ " (12)

N

Given that:
1
t = pr +nlz| = pr + 2| 7 — p?

Take the square of equation 9

t* = p*x® + n?2% + 2pan)|z|

t? = pPa? + <52 —p2)22+2p:m]|z]

p2a? —p?t =12 — (52)2 — 2pxn|z|

From equation 12 above, take the square of the denominator and substitute p?z? — p?z2,

we have:

2
(3377 — p!ZI) = 2 — 2apn|z| + p*z°
=z (— — p2> — 2xpn|z| + p?2?

=5 — 2?p® — 2apn|z| + p*2°
2
BZ
—(2%p* — p*2?) — 22 |Z|+ i
pP—p pilel+ 25

= —2%p? + p?? — —2xpn|z| + —

2

2
— <t2 3 2px'r]|z]) — 2xpn|z| + =5 52

——t2+—+21w71/f ZﬂpﬁHﬂL

— el
g B

2 22,
_@‘F@—t
B2 52



R
(a0 = plel)” = 5 =
R2
xn — plz| = E—tz
R2 2
xn —plz| = ﬁ—tQ for t< 7
Or:
. R2 2
xn —plz| =1 tQ_E for t> 7
where:

R =+Vax?+ 22

So, equation 11 becomes:

1

d i

d_lt): - " = " = | on C for t>
o —p—pldl o e

dp n —in

(13)

| =

YR Y

Interpretation

- The singularity at t = % marks the wavefront arrival time.

- The factor —= = represent the 2D geometric spreading of the wave.
t2,R7
HQ
- The imaginary unit, ¢, arises beacuse the Cagniard path, C, lies in the complex p—
R
E.
- Equation 13 is central to the Cagniard-De Hoop method as it enables the converison

plane where xn — p|z| is purely imaginary for ¢ >

of the integral (equation 11) into a laplace-transform-like expression, from which time-

domain solution can be directly known.

Now, let’s substitute equation (13) into equation(11)

FRom equation 13, we have:

12



2 - &
A e—s(pz+n|z|)
Uy(z, 2,8) = Sl m {/C dp}
A o0 o—s(pz+nlz]) —iy
Uy (7, 2,58) = 5——5 Im / : dt (14)
2mpf B 7 2 _ R

R

7 is real on C for ¢t > %. The term inside the imaginary part is purely imaginary (—ix

real function). Therefore:

Im{—i x (real integral)} = Re{(real integral)}.

Im{—{/”.}:Re{/”.}

et dt (15)

i ( ) A /°° 1
U\, 2,8) = ——— —
Y\ < 27Tpﬁ2 % /tQ—Ig—;

Equation 15 is a Laplace transform equation.

Step 6: Inverse Laplace Transformation

Now, if we find the inverse laplace transform of equation 15. we get:

wy(z, 2 ) = — ! H(t—§> (16)

2mpfB* fp2 _ g_j g

Equation 16 is the time-domain solution w,(z, 2, t)

13



Box 1.0 - The Cagniard path

1
t=pz+ |24/ = — P

32
I[solate the square root term:
1
t—px = 2| 7 —p?
Divide both sides by |z|:
t—pxr i 2
2] B2

Now square both sides:

Multiply both sides by |z|?:

Expand the left-hand side:

2 2o 2 2.2
Bring all terms to one side:
2
t? — 2tpx + p’z® + |2|*p?® — —’;L =0

Group like terms:

-2
pA(x® + |2?) — 2tz -p + <t2 — |5_|2) =0

This is a quadratic equation in p. Solving using the quadratic formula:

st (2tw)? — 4+ 12P) (12 - )
2(2* + [21?)

p:

14



Box 1.0 - The cagniard path - Contd

Simplify:

te + \/t2x2 — (22 +|2?) <t2 - 'ﬁ—'f>

56'2 e |Z|2

p:

xti\/ﬁfz—%—i—mz‘_gp 2t2+|2| |2[2

p:

z? + |z|?
ats \/x2|z|2 IEEER |2|z\2 e
2+ |z|2
xt £ |z| Zi—i—" — ¢2
P= x? + |z|?
ot £ || [EEEE — 2wt |z] /[ -2
b= 2+ |22 - R?

. 2
zt+i|z]| t2—g—2

R
=2 , t>E

p:
Tt—|z| ——tQ .
——— 1<%

Notes: We can see that p is purely real, contributing nothing to the imaginary

x2+|z|2

part when t < ¢ i.e when t < % = =" pis only imaginary for any ¢ > t, which

B

is actually the part we are interested in. We are not interested in anything that

arrives before ¢ (causality). So, the objective would be to deform the path such

that p is real and positive for with ¢ > 3. See above.

15




Box 2.0 - The time derivative along the cagniard path

Given the equation:

1
t =pxr+n|z| where n= 7 Z

Differentiate both sides with respect to ¢

Left-hand side:

Right-hand side:

at \" V)T a\Vm P

Differentiate the square root term using the chain rule:

d 1 1 /1 172 dp P dp

— 2 = 2 = 2 (= B S —

dt< 5 p) 2(B2 p) (=2p), T odt
N

So the right-hand side becomes:

S0 EE w4y
dt /% — 2 dt
Factor out %
d
1=1[z— |7 = d—];
dp
Solve for —
dp 1 B 1
At oy 2 lp
i — p2 1 )
2 B2 P
dp 1 n
dt . lzlp xn—|zlp
n

16




Box 3.0 — Detailed Derivation of the Integral Simplification in Equation 7

We aim to show that:

+ico _ ; —s(pz+n|z|) +ico —s(pz+n|z|)
/ I dp =2Im {/ c - dp} ,
—100 n 0 n

where 7 = ﬁ—IQ — p? (n is complex since p is complex)

Parametrize the Contour

Let p = iy, where y is real, y € R. Then:
o dp =idy,
o=,/ /8—12 + 42 (n is now real and positive for real y).

The integral becomes:

+ico +oo _ s —s(iyz+n|z|) +oo ,—sn|z| ,—isyz
e . € (&
[ rwa= [ = [y

Odd/Even Decomposition of the integrand

Following Euler’s formula, the integrand can be split into real (even; cosine

function) and imaginary (odd; sine function) parts:

—1iSYyx

e = cos(syx) — isin(syz).

Thus:
el —sn|z| snl2| o
e (cos(syx) — isin(syx)) _¢€ cos(syx) . LH(SZ/ZU)
Ui n -
NS ~ )
E(y) O(y)

6_5"7|Z‘

(Cos(syx) - isin(syx)) = E(y) — i O(y).

e E(y): Even in y (since cos is even, 7 is even).

e O(y): Odd in y (since sin is odd, and —i flips sign with y).

The even part E(y) is:

e~ *l cos(syx)

E(y) = ;

17




Box 3.0 — Detailed Derivation of the Integral Simplification in Equation 7 - Contd.

The imaginary part of the integrand is:

I { e—S(pw+7l|Z|) } m { 6_577|Z|6_i5y1' } _ _6_577‘74 Sin(sym) _ _O<y>,
n n n

E(p) E(y)

-~ -~

where O(y) is the odd part.

However, the original integrand is purely imaginary. Thus, we focus on the

imaginary contribution:

+ico _ ; —s(pz+n|z]) +o0o —sn|z| ,—isyx

€ (& e

/ ——dp= / —dy.
—100 n —00 n

+oo e—sn|z\6—isyx +o00 ‘ 0 oo
/ TC@/:/ E(y)—@0(y)dy=/ ---dy+/ cee dy.
— 00 —00 —00 0

Use symmetry

Since E(y) is even: E(—y) = E(y)

Since O(y) is odd: O(—y) = —O(y)
So:
/ E(y) dy = /OOO E(y) dy, / O(y) dy = —/OOO O(y) dy
Then:
/_ (E(y) —i0(y)) dy = /Ooo E(y)dy +i Doo O(y) dy
/OOO(E(y) —i0(y)) dy = /Ooo E(y)dy —i OOO O(y) dy
Add both:

18




Box 3.0 — Detailed Derivation of the Integral Simplification in Equation 7 - Contd.

= OOE(y)dwai ) y)dy + ooE(y)dy—i 3 9) dy.

:2/OOOE(y)dy.

+oo —sn|z| ,—isyz 00 oo ,—sn)z|
/ e e dy = 2/ B(y) dy = 2/ e cos(syx) a0
—00 n 0 0 n

(. S/

E(y)

Remember p =iy, so y = —ip. Thus:
100
= —22'/ E(y) dp.
0

o /ZOO 6_577|Z| COS(Syx) dp _ o /ZOO 6—877‘2| COS(—ipr) dp
0 n 0 n

J/ (. J/
-~

E(y) E(p)

+o00 efsn|z|efisyw +o0 ' . 100
/ - [ Bw -0 dy = - / E(y) dp.
oo —oo 0

From the symmetry of the integral:

00 o —s(pr+n|z|) 0 o—snlz|g—isyr 0 . .
/ —dp= / ——idy = / (E(y) —i0(y)) i dy.
0 n 0 n 0

= /Oooi E(y) + O(y)dy-

e The real part here is fooo O(y)dy
e The imaginary part is [~ E(y)dy
Taking the imaginary part:

00 —s(pa-rnl2]) 0
Im {/ N — dp} = / E(y) dy.
0 i 0

Now, recall that:

—Qi/oiooE(y)dp:—%-i/OmE(y)dy:Q/oooE(y)dy.

ico Fico ,—s(pz+n|2|)
—22'/ E(y)dszIm{/ —dp}.
0 0 n

19

Thus:
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